Bipartite Theory of Mixed Domination

V. Swaminathan

Research Coordinator
Ramanujan Research Centre
S.N.College, Madurai, India

Y. B. Venkatakrishnan

Department of Mathematics
Sastra University
Tanjore, India 613402
venkatakrish2@maths.sastra.edu

Abstract. We give the bipartite theory of vertex-edge weak dominating set and edge-vertex strong dominating set of a graph.

Mathematics Subject Classification: 05C69

Keywords: X-dominating set, Y-Dominating set, Vertex-edge weak dominating set, edge-vertex strong dominating set

1. Introduction

A graph \(G=(V,E) \) is bipartite if its vertices can be partitioned into two subsets \(V_1 \) and \(V_2 \) such that for every edge \((u,v) \in E \), either \(u \in V_1 \) and \(v \in V_2 \) or \(u \in V_2 \) and \(v \in V_1 \). If a connected graph \(G=(V,E) \) is bipartite, we could denote it \(G=(V_1,V_2,E) \) to indicate the bipartition of its vertices. Let \(G=(X,Y,E) \) denote an arbitrary bipartite graph.

Given an arbitrary graph \(G=(V,E) \), one can construct a variety of bipartite graphs \(G'=(X,Y,E') \) which faithfully represent \(G \), in the sense that given two graphs \(G \) and \(H \), \(G \) is isomorphic to \(H \) if and only if the corresponding bipartite graphs \(G' \) and \(H' \) are isomorphic. Here we give two such bipartite constructions.
Consider the graph G in figure 1, whose vertices and edges are labeled. Figure 2 and figure 3 are two bipartite graphs, denoted by $VNe(G)$ and $EN^+(G)$ which can be constructed from $G = (V,E)$. The neighbor of an edge 1 is denoted by $N[1]$ is defined as $N[1] = N(a) \cup N(b)$, where a and b are vertices incident with edge 1. The graph $VNe(G) = (V,N[e],E')$ is defined by the edges $E' = \{(x,N[y]) / x \in N[y] \text{ in } G\}$.

The graph $EN^+(G) = (E,N[v],F)$ is given in Figure 1 the edges $F = \{(e,N[v]) / \text{ the vertices incident with } e \text{ are in } N[v]\}$.

[3] and [4] suggests that given any problem, say P, on an arbitrary graph G, there is very likely a corresponding problem Q on a bipartite graph G^1, such that a solution for Q provides a solution for P. Here we give the bipartite version of vertex-edge weak dominating set and edge-vertex strong dominating set.
2. Definitions

The definitions are given in [3] and [4]. Let \(G = (X, Y, E) \) be a bipartite graph. Two vertices \(u, v \in X \) are X-adjacent if they are adjacent to a common vertex in Y. A subset \(D \) of \(X \) is a Y-dominating set if every \(y \in Y \) is adjacent to at least one vertex in \(D \). The minimum cardinality of a Y-dominating set is called the Y-domination number and is denoted by \(\gamma_Y(G) \). A subset \(D \) of \(X \) is an X-dominating set if every \(x \in X - D \) is X-adjacent to at least one vertex \(u \in D \). The minimum cardinality of a X-dominating set is called the X-domination number and is denoted by \(\gamma_X(G) \).

The definitions are defined as in [1]. Let \(G^1 = (V, E) \) be a graph. \(v \) and \(x = uv \in E \) weakly dominate each other if \(v \in N[x] \). Vertex-edge weak domination number \(\gamma_{01}(G^1) \) of a graph \(G^1 \) is the minimum cardinality of a set of vertices weakly dominating all edges of \(G^1 \).

\(v \) and \(x = uv \in E \) strongly dominate each other if \(x \in \langle N[v] \rangle \). The edge-vertex strong domination number \(\gamma_{10}(G^1) \) is the minimum number of set of edges strongly dominates all vertices of \(G^1 \).

3. Main Result

Theorem 1: For a graph \(G \), \(\gamma_Y(VNe) = \gamma_{01}(G) \).
Proof: Let \(S \subseteq V \) be a \(\gamma_Y(VNe) \) set. Elements of \(S \) are adjacent to \(N[e] \forall e \in E(G) \).
In \(G \), elements of \(S \) weakly dominates edges of \(G \). Therefore, \(S \) is a vertex-edge weak dominating set. \(\gamma_0(G) \leq |S| = \gamma_1(VNe) \).
Conversely, \(S \) be a vertex edge weak dominating set. Elements of \(S \) weakly dominate all edges of \(G \). Equivalently for every edge \(x \in E(G) \), there exists \(\nu \in S \) such that \(\nu \in N[x] \). Elements of \(S \) is adjacent to at least one element of \(N[x] \), in graph \(VNe \). Therefore, \(S \) is a \(Y \)-dominating set in \(VNe \), \(\gamma_Y(VNe) \leq |S| = \gamma_01(G) \). Hence, \(\gamma_Y(VNe) = \gamma_01(G) \).

Theorem 2: Every distance 2-dominating set in \(G \) is a \(X \)-dominating set in \(VNe \).

Proof: Let \(S \) be a \(\gamma_2(G) \) set. \(\forall u \in V - S \exists v \in S \), such that \(u \) and \(v \) are at a distance 2.
Case (i): \(d(u, v) = 1 \).
\(u \) and \(v \) are incident to a common edge \(e \). In graph \(VNe \), \(u \) and \(v \) are incident to a vertex \(N[e] \). Hence, \(S \) is a \(X \)-dominating set in \(VNe \).

Case (ii): \(d(u, v) = 2 \).
Let \(u - v \) path be \(u\varepsilon \nu w_{2}\varepsilon v \). \(N[e_1] = N(u) \cup N(w) \) and \(N[e_2] = N[w] \cup N(v) \). In graph \(VNe \), \(u \) and \(v \) are incident with \(N[e_1] \) and \(N[e_2] \). Hence, \(S \) is a \(X \)-dominating set in \(VNe \).

Observation: The converse of the above theorem need not be true. In \(G \), \(S = \{a\} \) is not a distance 2-dominating set but in \(VNe \) the set \(S = \{a\} \) is a \(X \)-dominating set.
Consider the graph \(G \),

![Diagram of the graph VNe](image-url)

The graph \(VNe \).
Theorem 3: For any graph G, $\gamma_Y(EN^+) = S\gamma_{10}(G)$.

Proof: Let D be a $\gamma_Y(EN^+)$ set. Elements of D are adjacent to elements $N[v]$. In G, D strongly dominates all vertices of G. Therefore, $S\gamma_{10}(G) \leq |D| = \gamma_Y(EN^+)$. Conversely, let D be a $S\gamma_{10}(G)$ set. Edges in D strongly dominates all vertices of G. $\langle N[v]\rangle$ contains at least one edge of D for every $v \in V(G)$. D is a Y-dominating set in EN^+. Therefore, $\gamma_Y(EN^+) \leq |D| = S\gamma_{10}(G)$. Hence, $\gamma_Y(EN^+) = S\gamma_{10}(G)$. □

Theorem 4: For any graph G, $\gamma_X(EN^+)=\gamma_1(G)$.

Proof: Let D be a $\gamma_X(EN^+)$ set. $\forall x \in E - D$ there exists $y \in D$ such that x and y are X-adjacent. In G, edges x and y belongs to $\langle N[a]\rangle$ for some $a \in V(G)$. Edges x and y are incident to a common vertex in $N[a]$. D is an edge dominating set. $\gamma_1(G) \leq |S| = \gamma_X(EN^+)$. Conversely, D be a $\gamma_1(G)$ set. $\forall x \in E - D$, there exists $y \in D$ such that x and y are adjacent. Suppose x and y are incident at $u \in V$. The graph $\langle N[u]\rangle$ contains x and y. In graph EN^+, x and y are adjacent to $N[u]$. Hence, D is a X-dominating set in EN^+. Therefore, $\gamma_X(EN^+) \leq |D| = \gamma_1(G)$. Hence, $\gamma_X(EN^+) = \gamma_1(G)$. □
References

Received: March, 2009