A Study on a Subset of Absolutely
Convergent Sequence Space

U. K. Misra¹, M. Misra², N. Subramanian³ and P. Samanta⁴

¹Department of Mathematics, Berhampur University
Berhampur-760 007, Orissa, India
umakanta_misra@yahoo.com

²Principal, Government Science College
Malkangiri, Orissa, India

³Department of Mathematics, Sastra University
Tanjore-613 402, Tamilnadu, India

⁴Department of Mathematics, Gopalpur College
Gopalpur on sea, Orissa, India

Abstract: In this paper, we define the section sequence space ℓ_s which is called the section sequence space of ℓ and study the inclusion $\ell_s \subset \ell$. Further AK-property, Dual space of ℓ_s are studied.

Mathematics Subject Classification: 40A05

Keywords: Schauder basis, dual space, solid, weak and strong convergence, separable

1. Introduction and preliminaries

Let ℓ be an BK-space. We denote ℓ_s as the sequence consisting of all those sequences $\ell_s = \{ x = (x_k) : (y_k) \in \ell \}$, where

$$y_k = x_1 + x_2 + x_3 + \ldots + x_k \quad \text{for each fixed } k = 1, 2, 3, \ldots.$$

For a sequence $(y_k) \in \ell_s$, we can calculate the sequence (x_k) by
\[x_1 = y_1, \]
\[x_2 = y_2 - x_1 = y_2 - y_1, x_3 = y_3 - x_1 - x_2 = y_3 - y_1 - (y_2 - y_1) = y_3 - y_2, \ldots \]
\[x_n = y_n - y_{n-1}. \]

For any \(x \in \ell_s \), we define
\[\|x\| = \left(|x_1|^2 + |x_1 + x_2|^2 + \ldots + |x_1 + x_2 + \ldots + x_k + x_{k+1}|^2 + \ldots \right)^{1/2} < \infty. \]

For a given a sequence \(x = \{x_k\} \), we define the \(n^{th} \) section as the sequence
\[x^{(n)} = \{x_1, x_2, \ldots, x_n, 0, 0, \ldots\}. \]

Let
\[\delta^{(n)} = (0, 0, \ldots, 1, -1, 0, 0, 0, \ldots), \]
where 1 is in the \(n^{th} \) place and -1 in the \((n+1)^{th} \) place.

An FK-space \(X \) is said to have AK-property if \(\{\delta^{(n)}\} \) is a Schauder basis for \(X \). The space \(X \) is said to have AD if \(\Phi \) is dense in \(X \). We note that \(\text{AK} \Rightarrow \text{AD} \) by [1].

For the sequence space \(X \), we define
\[X^\beta = \left\{ a = \{a_k\} : \sum_{k=1}^\infty a_kx_k \text{ is convergent, for each } x \in X \right\}. \]

We called \(X^\alpha, X^\beta, X^\gamma \) as the \(\alpha \)-dual of \(X \), \(\beta \)-dual of \(X \), \(\gamma \)-dual of \(X \), respectively. Note that \(X^\alpha \subset X^\beta \subset X^\gamma \). If \(X \subset Y \) then \(Y^\mu \subset X^\mu \), for \(\mu = \alpha, \beta \) and \(\gamma \).

We have the following known results.

Lemma 1: (See Theorem 7.2.7.in [3])

Let \(X \) be an FK-space \(\supset \Phi \). Then

(i) \(X^\gamma \subset X^f \)

(ii) If \(X \) has AK, \(X^\beta = X^f \)

(iii) If \(X \) has AD, \(X^\beta = X^\gamma \)

Lemma 2 (Page 69, 2.3.1 in [2]):
If a Normed space X has a Schauder basis, then X is separable.

2. Main Results:

In this section we study some of the property of ℓ_s.

Proposition-1: ℓ_s has Schauder basis namely (e_1, e_2, e_3, \ldots), where $e_k = \{0,0,0,\ldots,1,-1,0,0,\ldots\}$, 1 is in the k^{th} place and -1 is at the $(k+1)^{th}$ for $k=1,2,\ldots$.

Proof: We know that $\{\delta^{(1)}, \delta^{(2)}, \ldots\}$ is a Schauder basis for ℓ transformations given in the introduction. It follows that (e_1, e_2, e_3, \ldots) is a Schauder basis for ℓ_s.

Theorem-1: ℓ_s has AK-property.

Proof. Let $x = (x_1) \in \ell_s$. Then $T(y_n) \in \ell$ with $y_n = x_1 + x_2 + \ldots + x_k$. Put $x^{(n)} = (x_1, x_2, x_3, \ldots, x_n, 0, 0, \ldots)$. Then

$$
\|x - x^{(n)}\| = \|0,0,0,\ldots,x_{n+1},x_{n+2},\ldots\| = |x_{n+1}| + |x_{n+1} + x_{n+2}| + \ldots.
$$

$$
= |y_{n+1} - y_n| + |y_{n+2} - y_{n+1}| + |y_{n+3} - y_{n+2}| + \ldots.
$$

$$
= \sum_{k=n+1}^{\infty} |y_k - y_n| \to 0, \text{ as } n \to \infty.
$$

Thus we have $0 \leq \|x - x^{(n)}\| \leq 0$, for sufficiently large n. Hence

$$
\|x - x^{(n)}\| \to 0, \text{ as } n \to \infty.\text{ Therefore the space } \ell_s \text{ has AK. This completes the proof.}
$$

Corollary-1: The set $\{\delta^{(1)}, \delta^{(2)}, \ldots\}$ is a Schauder basis for ℓ_s.

Proof: By p.59,4.2.13 in [3].

Proposition-2: $\ell_s \subset \ell$ and the inclusion is strict.
Proof. Let \(x_k \in \ell_x \). Then \(y_k \in \ell \). Hence \(\sum_{k=1}^{\infty} |y_k| < \infty \). But as \(x_k = y_k - y_{k-1} \). We have
\[
|x_k| = |y_k - y_{k-1}| \leq |y_k| + |y_{k-1}|
\]
Then
\[
\sum_{k=1}^{\infty} |x_k| \leq \sum_{k=1}^{\infty} |y_k| + \sum_{k=1}^{\infty} |y_{k-1}|
\]
Hence \(x_k \in \ell \). Consequently \(\ell_x \subset \ell \).

Next we show that the above inclusion is strict. For this take the sequence \(\delta^{(k)} = (1,0,0,\ldots) \). Then \(\delta^{(k)} \in \ell \) and thus we have
\[
y_1 = 1, \ y_2 = 1 + 0 = 1, y_3 = 1 + 0 + 0 = 1, \ldots, y_k = 1 + 0 + \ldots + 0 = 1.
\]
Now, \(|y_k| = 1 \) for all \(k \). Hence \(\{|y_k|\} \) does not tend to zero as \(k \to \infty \). Hence \(\delta^{(k)} \not\in \ell_x \).
Thus the inclusion \(\ell_x \subset \ell \). This completes the proof.

Theorem-2: The dual of space \(\ell_x \) is \(\ell_\infty \).

Proof: A Schauder basis for \(\ell_x \) is \(\{e_k\} \) where \(e_k = (s^k) \) has \(1 \) in the \(k \)-th place and \(-1\) in the \((k+1)\)-th place and zero’s elsewhere. Let \(x \in \ell_x \). Then there exist scalars \(\alpha_1, \alpha_2, \ldots \) such that \(x = \sum_{k=1}^{\infty} \alpha_k e_k \) is unique. Now for any bounded linear operator \(f \) on \(\ell_x \) we have
\[
f(x) = f(\sum_{k=1}^{\infty} \alpha_k e_k) = \sum_{k=1}^{\infty} \alpha_k f(e_k) = \sum_{k=1}^{\infty} \alpha_k \gamma_k,
\]
where the numbers \(\gamma_k = f(e_k) \) are uniquely determined by \(f \). Also \(\gamma_k = f(e_k), |\gamma_k| = |f(e_k)| \). Since \(f \) is linear and bounded \(|\gamma_k| = |f(e_k)| \leq \|f\| \|e_k\| \). But
\[
\|e_k\| = \|s^{(k)}\| = \|(0,0,\ldots,1,-1,0,0,\ldots)\| = |0| + |0 + 0| + \ldots + |0 + 1| + |1 - 1| + \ldots
\]
(sum of the first \(k \) terms) and \(\|s^{(k)}\| = \|e_k\| = |1| = 1 \). Thus
\[|\gamma_k| \leq \|f\| \|k_k\| \leq \|f\| \cdot 1 \]
\[\Rightarrow |\gamma_k| \leq \|f\| \Rightarrow \sup_{(k)} |\gamma_k| \leq \|f\| = M. \]

Hence \((\gamma_k) \in \ell_\infty\). Therefore

(2.1) \[\ell'_s \subset \ell_\infty. \]

But by Proposition-2, \(\ell_s \subset \ell \). Hence \(\ell' \subset \ell'_s \). As \(\ell' = \ell_\infty \),

(2.2) \[\ell_\infty \subset \ell'_s. \]

Hence from (2.1) and (2.2) \(\ell'_s = \ell_\infty \). This completes the proof.

Theorem-3: The β-dual of \(\ell_s \) is \(\ell_\infty \).

Proof: By Proposition-2 we get \(\ell_s \subset \ell \). Hence \(\ell^\beta \subset (\ell_s)^\beta \). But \(\ell^\beta = \ell_\infty \). Hence

(2.3) \[\ell_\infty \subset (\ell_s)^\beta. \]

Next, let \(y \in (\ell_s)^\beta \) and \(f(x) = \sum_{k=1}^{\infty} x_k y_k \) with \(x \in \ell_s \). Take \(x = s^{(k)} \in \ell_s \), where \(s^{(k)} = (0,0,\ldots,1,-1,0,\ldots) \), \(\|x_n\| = \{0,0,0,\ldots,1,0,\ldots\} \). As this converges to zero, \(s^{(k)} \in \ell_s \). Hence

\[\|s^{(k)}\| = \begin{cases} 0 \vline & |0 + 0| + |0 + 0 + 0| + \ldots \\ \|0 + 0 + \ldots + 1\| + |0 + 0 + \ldots + 1 - 1| + \ldots & \end{cases} \]
\[\Rightarrow \|s^{(k)}\| = 1. \]

But

(2.4) \[|y_n| = |f(s^{(k)})| \leq \|f\|\|s^{(k)}\| \leq \|f\| \cdot 1 = \|f\|. \]

Thus \(\{y_n\} \) is a bounded sequence. Further, as \(y \) is arbitrary in \((\ell_s)^\beta \).

(2.5) \[(\ell_s)^\beta \subset \ell_\infty. \]

From (2.3) and (2.4) we get \((\ell_s)^\beta = \ell_\infty \). This completes the proof.

Proposition-3: \(\ell_s \) is solid.
Proof: Let $|x_k| \leq |y_k|$ with $y = (y_k) \in \ell_s$. So $|\xi_k| \leq |\eta_k|$ with $\eta = (y_k) \in \ell$. But ℓ is solid. Hence $\xi = (\xi_k) \in \ell$. Therefore $x = (x_k) \in \ell$. Hence ℓ_s is solid. This completes the proof.

Corollary-2: In ℓ_s, weak convergence does not imply strong convergence.

Proof: Assume that weak convergence implies strong convergence in ℓ_s. Then we would have $(\ell_s)^\beta = \ell_s$ [see (1)]. But $(\ell_s)^\beta = (\ell_\infty)^\beta = \ell$. By Proposition 2, ℓ_s is a proper subspace of ℓ. Thus $(\ell_s)^\beta \neq \ell_s$. Hence weak convergence does not imply strong convergence in ℓ_s.

This completes the proof.

Corollary-3: $(\ell_s)^\mu = \ell_\infty$ where $\mu = \alpha, \beta, \gamma, f$.

Proof: ℓ_s has AK property, by theorem- 1. Hence by Theorem- 7.3.9 in [3] we get $(\ell_s)^\beta = (\ell_s)^\gamma = \ell_\infty$. Hence $(\ell_s)^\beta = \ell_\infty$.

(2.6) $(\ell_s)^\gamma = \ell_\infty$.

Since AK \Rightarrow AD, from [3] we get $(\ell_s)^\beta = (\ell_s)^\gamma$. Therefore

(2.7) $(\ell_s)^\beta = (\ell_s)^\gamma = \ell_\infty$.

By proposition-3, we have ℓ_s is solid. Hence by Theorem 7.3.9 in [3], We get

(2.8) $(\ell_s)^\beta = (\ell_s)^\gamma = \ell_\infty$.

From (2.6), (2.7) and (2.8), we have $(\ell_s)^\alpha = (\ell_s)^\beta = (\ell_s)^\gamma = (\ell_s)^\gamma = \ell_\infty$.

This completes the proof.

Theorem -4: Let Y be any FK-space $\supset \Phi$. Then $Y \supset \ell_s$ if and only if $\{\phi^{(k)}\}$ is weakly bounded.

Proof: In order to establish the result it is enough to establish the following result:

$Y \supset \ell_s \iff Y^f \subset (\ell_s)^f$.

Since ℓ_s has AD and $(\ell_s)^f = \ell_\infty$, by using Theorem 8.6.1 in [3] we have

$Y^f \subset \ell_\infty$.

Subset of absolutely convergent sequence space

\[\iff f \in Y', \text{ the topological dual of } Y \iff f(\delta^{(k)}) \in \ell_{\infty}\]
\[\iff f(\delta^{(k)}) \text{ is bounded} \iff \text{Thesequence } \{\delta^{(k)}\} \text{ is weakly bounded}.

This completes the proof.

Theorem-5: In \(\ell_s\), weakly convergent sequences are norm convergent.

Proof: Let \(a = \{a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots\}\) be weakly convergent and let \(A = (a_{nk})\) be an infinite matrix. Let us assume that \(A\) is coercive. Since \((\ell_s)' = \ell_{\infty}\), it is a conservative matrix. So the column exists by, Theorem 1.3.6 in [3]. By using Theorem 1.3.7 in [3]

\[\left| a_1, a_1 + a_2, a_1 + a_2 + a_3, \ldots \right| = \lim_{n \to \infty} \left\{ \frac{|a_{n1}| + |a_{n1} + a_{n2}| + \ldots}{|a_{n1} + a_{n2} + a_{n3}| + \ldots} \right\} \leq \|A\|.

Since bounded monotonic sequence converges, \(a \in \ell_s\).

This completes the proof.

Proposition-4: \(\ell_s\) is not perfect.

Proof: We know that \((\ell_s)' = \ell_{\infty}\). Hence \((\ell_s)' = (\ell_{\infty})'\). But as \((\ell_{\infty})' = \ell\), \((\ell_s)' = \ell\). Hence \(\ell_s\) is not perfect. This completes the proof.

Proposition-5: The space \(\ell_s\) is separable.

Proof: By Proposition 1, we have \(\ell_s\) has Schauder basis \(\{e_1, e_2, \ldots, e_n, \ldots\}\). Also \(\ell_s\) is a Banach space. Hence, by the Lemma-2, it follows that \(\ell_s\) is separable. This completes the proof.

Proposition-6: The space \(\ell_s\) is not separable.

Proof: By Theorem 1.3.9 in [2].

Proposition-7: The space \(\ell_s\) is not reflexive.

Proof: By Proposition-5, we have \(\ell_s\) is separable. But, by Proposition 2 \((\ell_s)' = \ell_{\infty}\).

Since \(\ell_{\infty}\) is not separable by Proposition-6, \(\ell_s\) is not reflexive. This completes the proof.
Theorem-6: The space ℓ_∞ is an inner product space but not a Hilbert space.

Proof. The proof will be established by showing that the norm satisfies the law of parallelogram. Let us take

$$x = \{1,-1,0,\ldots\} \in \ell_\infty \quad \text{and} \quad y = \{1,-1,0,\ldots\} \in \ell_\infty.$$

Then

$$\|x\|_\infty = \{\|x_1\| + \|x_1 + x_2\| + \|x_1 + x_2 + x_3\| + \ldots\}$$

$$= \{1 + 1 + 1 + 0 + \ldots\} = 1$$

Similarly,

$$\|y\|_\infty = \{1 + 1 + 1 + 1 + 0 + \ldots\} = 1$$

Consider,

$$\|x + y\|_\infty = \{\|x_1 + y_1\| + \|(x_1 + y_1) + (x_2 + y_2)\| + \ldots\} = 2$$

Similarly,

$$\|x - y\|_\infty = \{\|x_1 - y_1\| + \|(x_1 - y_1) + (x_2 - y_2)\| + \ldots\} = 0.$$

Now

$$2^2 + 0 = 2\{1^2 + 1^2\} \implies 4 = 4.$$

Thus parallelogram law is satisfied. Therefore ℓ_∞ is an inner product space.

For the proof of the second part let us suppose that ℓ_∞ is a Hilbert space. Then by [2] (Theorem 4.6.6) ℓ_∞ would satisfy reflexivity condition. This contradicts Proposition-7. Hence ℓ_∞ is not a Hilbert space. This completes the proof.

REFERENCES

Received: November, 2008