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Abstract

Conformal mappings are familiar tools in science and engineering.
However exact mapping functions are unknown except for some spe-
cial regions. In this paper, a boundary integral equation for confor-
mal mapping w = f(z) of multiply connected regions onto an annulus
µ1 < |w| < 1 with circular slits µ2, µ3, ..., µM is presented. Our theoret-
ical development is based on the boundary integral equation for confor-
mal mapping of doubly connected region derived by Murid and Razali
[12]. The boundary integral equation involved the unknown circular
radii. For numerical experiments, the boundary integral equation with
some normalizing conditions are discretized which leads to a system of
nonlinear equations. This system is solved simultaneously using mod-
ification of the Gauss-Newton named Lavenberg-Marquardt with the
Fletcher’s algorithm for solving the nonlinear least squares problems.
Once the boundary values of the mapping function are calculated, we
can use the Cauchy’s integral formula to determine the mapping func-
tion in the interior of the region. Numerical implementations on some
test regions are also presented.
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Keywords: Conformal mapping, Integral equations, multiply connected
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1 Introduction

Integral equation methods for conformal mapping of multiply connected re-
gions is presently still a subject of interest. Nehari [13, p. 335] described the
five types of slit region as important canonical regions for conformal mapping
of multiply connected regions. They are the discs with concentric circular slits,
an annulus with concentric circular slits, the circular slit region, the radial slit
region and the parallel slit region. In general the radii of the circular slits are
unknown and have to be determined in the course of the numerical evaluation.
However, exact mapping functions are not known except for some special re-
gions. In this paper we describe an integral equation method for computing
the conformal mapping of multiply connected regions onto an annulus with
concentric circular slits.

Several methods have been proposed in the literature for the numerical
approximation for conformal mapping of multiply connected regions [1, 3, 5,
6, 8, 11, 12, 14, 15, 18]. One of the methods is the integral equation method.
Some notable ones are the integral equations of Warschawski, Gerschgorin, and
Symm. All these integral equations are extensions of those maps for simply
connected regions. Recently, conformal mapping of doubly connected regions
onto an annulus via the Kerzman-Stein and Neumann kernels are also dis-
cussed in Murid and Mohamed [11], and Mohamed [10, p. 51-88]. But Murid
and Razali [12] and Mohamed [10] have not yet formulated an integral equa-
tion method based on the Neumann kernel for conformal mapping of bounded
multiply connected regions onto an annulus with circular slits.

The plan of the paper is as follows : In Section 2, we derive a boundary
integral equation satisfied by a function analytic on a multiply connected re-
gions subjected to certain conditions. This derivation improves the boundary
integral equation derived by Murid and Razali [12] which was limited to dou-
bly connected regions. Furthermore it leads to a much simpler derivation of a
system of an integral equations developed by Mohamed [10]. Another special
case of this result is the integral equation involving the Neumann kernel related
to conformal mapping of multiply connected regions onto an annulus with cir-
cular slits. In Section 3, we give an application of the theoretical result in
Section 2 to conformal mapping of multiply connected regions. The numerical
implementation for computing the mapping function is discussed in Section 4.
Section 5 presents six numerical results as well as comparisons with the results
of Amano [1], Murid and Mohamed [11], Mohamed [10], Symm [18], Reichel
[15], Kokkinos et al. [8], Ellacott [5] and Okano et al. [14]. In Section 6 we
draw some conclusions.
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2 An Integral Equation Related to a Bound-

ary Relationship

Let Γ0, Γ1, . . ., ΓM be M + 1 smooth Jordan curves in the complex z-plane
such that Γ1, Γ2, . . ., ΓM lies in the interior of Γ0. Denote by Ω the bounded
(M + 1)-connected region bounded by Γ0, Γ1, . . ., ΓM . The positive direction
of the contour Γ = Γ0 ∪Γ1 ∪ · · · ∪ΓM is usually that for which Ω is on the left
as one traces the boundary (see Figure 1).

M

0

21

Figure 1: (M + 1)-connected region Ω.

It is well known that if h is analytic and single-valued in Ω and continuous
on Ω ∪ Γ, we have [7, p. 176]

1

2πi

∫
Γ

h(w)

w − z
dw =

1

2
h(z), z ∈ Γ. (1)

Suppose D(z) is analytic and single-valued with respect to z ∈ Ω and is
continuous on Ω ∪ Γ. Suppose further that D satisfies the boundary relation-
ship

D(z) = c(z)

[
T (z)Q(z)D(z)

P (z)

]−
, z ∈ Γ, (2)

where the minus sign in the superscript denotes complex conjugate, T (z) =
z′(t)/|z′(t)| is the complex unit tangent function at z ∈ Γ, while c, P , and Q
are complex-valued functions defined on Γ with the following properties:
(P1) P (z) is analytic and single-valued with respect to z ∈ Ω,
(P2) P (z) is continuous on Ω ∪ Γ,
(P3) P (z) has a finite number of zeroes at a1, a2, ..., aM in Ω,
(P4) c(z) �= 0, P (z) �= 0, Q(z) �= 0, D(z) �= 0, z ∈ Γ.
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Note that the boundary relationship (2) also has the following equivalent
form:

P (z) = c(z)
T (z)Q(z)D(z)2

|D(z)|2 , z ∈ Γ. (3)

By means of (1), an integral equation for D may be constructed that is related
to the boundary relationship (2) as shown below:

Theorem 2.1 Let u and v be any complex-valued functions that are defined
on Γ. Then

1

2

[
v(z) +

u(z)

T (z)Q(z)

]
D(z) +

PV
1

2πi

∫
Γ

[
c(z)u(z)

c(w)(w − z)Q(w)
− v(z)T (w)

w − z

]
D(w)|dw|

= −c(z)u(z)

⎡
⎣ ∑

aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)

⎤
⎦
−

, z ∈ Γ, (4)

where the minus sign in the superscript denotes complex conjugation.

Proof. Consider the integral

I1(z) = PV
1

2πi

∫
Γ

v(z)T (w)D(w)

w − z
|dw|, z ∈ Γ. (5)

Using T (w)|d(w)| = dw and (1), since D is analytic on Ω, we obtain

I1(z) =
1

2
v(z)D(z), z ∈ Γ. (6)

Next we consider the integral

I2(z) = PV
1

2πi

∫
Γ

c(z)u(z)D(w)

c(w)(w − z)Q(w)
|dw|, z ∈ Γ. (7)

Using the boundary relationship (3), |D(w)|2 = D(w)D(w) and T (w)|dw| =
dw, we get

I2(z) = −c(z)u(z)

[
1

2πi

∫
Γ

D(w)

(w − z)P (w)
dw

]−
. (8)

Applying the residue theory and formula (1) to the integral in (8), I2(z) be-
comes

I2(z) = −c(z)u(z)

⎡
⎣1

2

D(z)

P (z)
+

∑
aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)

⎤
⎦

−

. (9)
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Applying the boundary relationship (2) to the first term on the right-hand side
yields

I2(z) = − u(z)D(z)

2T (z)Q(z)
− c(z)u(z)

⎡
⎣ ∑

aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)

⎤
⎦

−

. (10)

Finally looking at I2(z) − I1(z), yields

PV
1

2πi

∫
Γ

c(z)u(z)D(w)

c(w)(w − z)Q(w)
|dw| − PV

1

2πi

∫
Γ

v(z)T (w)D(w)

(w − z)
|dw|

= − u(z)D(z)

2T (z)Q(z)
− c(z)u(z)

⎡
⎣ ∑

aj insideΓ

Res
w=aj

D(w)

(w − z)P (w)

⎤
⎦
−

− 1

2
v(z)D(z), z ∈ Γ. (11)

Rearrangement of (11), gives (4). This completes the proof. �

3 The Boundary Integral Equation for Con-

formal Mapping of Multiply Connected Re-

gions

This section gives an application of Theorem 2.1 to conformal mapping of
multiply connected regions. Let w = f(z) be the analytic function which maps
Ω conformally onto an annulus (μ1 < |w| < μ0 = 1) with circular slits of radii
μ2 < 1, ..., μM < 1 (see Figure 2). The mapping function f is determined
up to a rotation of the annulus. The function f could be made unique by
prescribing that

f ′(a) > 0 or f(z∗) = w∗,

where a ∈ Ω, z∗ ∈ Γ0, and w∗ ∈ Unit Circle are fixed points.
The boundary value of f can be represented in form

f(z0(t)) = eiθ0(t), Γ0 : z = z0(t), 0 ≤ t ≤ β0, (12)

f(zp(t)) = μpe
iθp(t), Γp : z = zp(t), 0 ≤ t ≤ βp, p = 1, 2, ..., M, (13)

where θ0(t), θ1(t), ..., θM(t) are the boundary correspondence functions of Γ0,
Γ1, ..., ΓM respectively.

The unit tangent to Γ at z(t) is denoted by T (z(t)) = z′(t)/|z′(t)|. Thus it
can be shown that

f(z0(t)) =
1

i
T (z0(t))

θ′0(t)
|θ′0(t)|

f ′(z0(t))

|f ′(z0(t))| =
1

i
T (z0(t))

f ′(z0(t))

|f ′(z0(t))| , z0 ∈ Γ0, (14)
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f(zM(t)) =
μM

i
T (zM(t))

θ′M(t)

|θ′M(t)|
f ′(zM (t))

|f ′(zM (t))| =
μM

i
T (zM(t))

f ′(zM(t))

|f ′(zM(t))| ,
zM ∈ ΓM , (15)

f(zp(t)) =
μp

i
T (zp(t))

θ′p(t)

|θ′p(t)|
f ′(zp(t))

|f ′(zp(t))| = ±μp

i
T (zp(t))

f ′(zp(t))

|f ′(zp(t))| , zp ∈ Γp.

(16)
for p = 1, 2, ..., M − 1. Note that θ′0(t) > 0 and θ′M(t) > 0 while θ′p(t) may be
positive or negative since each circular slit f(Γp) is traversed twice (see Figure
2). Thus θ′p(t)/|θ′p(t)| = ±1.

...

M

0

21

1 2M 1

Figure 2: Mapping of a multiply connected region Ω.

The boundary relationships (14), (15) and (16) can be unified as

f(z) = ±|f(z)|
i

T (z)
f ′(z)

|f ′(z)| , z ∈ Γ, (17)

where Γ = Γ0 ∪ Γ1 ∪ · · · ∪ ΓM . Note that the value of |f(z)| is either 1, μM or
μp for z ∈ Γ. However we cannot compare (17) with (3) due to the presence of
the ± sign. To overcome this problem, we square both sides of the boundary
relationship (17) to get

f(z)2 = −|f(z)|2T (z)2 f ′(z)2

|f ′(z)|2 , z ∈ Γ. (18)

Comparison of (3) and (18) leads to a choice of c(z) = −|f(z)|2, P (z) =
f(z)2, D(z) = f ′(z), Q(z) = T (z), u(z) = T (z)Q(z) and v(z) = 1. Substitut-
ing these assignments into (4) leads to an integral equation satisfies by f ′(z),
i.e.,

f ′(z) + PV
1

2πi

∫
Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw|
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= |f(z)|2T (z)2

⎡
⎣ ∑

aj insideΓ

Res
w=aj

f ′(w)

(w − z)f(w)2

⎤
⎦

−

, z ∈ Γ. (19)

For the case where Ω is a multiply connected regions being mapped onto
an annulus with concentric circular slits, f(z) does not have any zeroes in
Ω. Thus the right-hand side of (19) vanishes and the integral equation (19)
becomes

f ′(z) + PV
1

2πi

∫
Γ

[
|f(z)|2T (z)2

|f(w)|2(w − z)T (w)
− T (w)

(w − z)

]
f ′(w)|dw| = 0, z ∈ Γ.

(20)
Multiply both sides by T (z) and using the fact T (z)T (z) = |T (z)|2 = 1 gives

T (z)f ′(z) + PV
1

2πi

∫
Γ

[
|f(z)|2T (z)

|f(w)|2(w − z)
− T (z)

(w − z)

]
T (w)f ′(w)|dw| = 0,

z ∈ Γ. (21)

The integral equation (21) can also be written briefly as

g(z) +

∫
Γ

N∗(z, w)g(w)|dw| = 0, z ∈ Γ, (22)

where

g(z) = T (z)f ′(z),

N∗(z, w) =
1

2πi

[
T (z)

(z − w)
− |f(z)|2T (z)

|f(w)|2(z − w)

]
.

3.1 Conformal Mapping of Doubly Connected Regions

For the special case where Ω is a doubly connected region, the single integral
equation in (22) can be separated into a system of equations

g(z0) +

∫
Γ0

N(z0, w)g(w)|dw| −
∫
−Γ1

P0(z0, w)g(w)|dw| = 0, z0 ∈ Γ0, (23)

g(z1) +

∫
Γ0

P1(z1, w)g(w)|dw| −
∫
−Γ1

N(z1, w)g(w)|dw| = 0. z1 ∈ Γ1, (24)

where

P0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

μ2
1(z − w)

]
,
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P1(z, w) =
1

2πi

[
T (z)

(z − w)
− μ2

1T (z)

(z − w)

]
,

N(z, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2πi

[
T (z)

z − w
− T (z)

z − w

]
, if w, z ∈ Γ, w �= z,

1

2π

Im[z′′(t)z′(t)]
|z′(t)|3 , if w = z ∈ Γ.

The kernel N is also known as Neumann kernel. Note that the PV symbols
are no longer required in (23) and (24) since the integrands are continuous
along their respective paths of integrations. The integral equations (23) and
(24) also involve the unknown parameter μ1. Our derivations of this system of
integral equation are much easier than the derivations given in Mohamed [10,
p. 71-76]. Naturally it is also required that the unknown mapping function
f(z) be single-valued in the problem domain [6, p. 217], i.e.,∫

−Γ1

f ′(w)dw = 0 (25)

which implies ∫
−Γ1

g(w)|dw| = 0. (26)

Note that the system of integral equations consisting of (23), (24) and (26) is
homogeneous and does not have a unique solution. To obtain a unique solution,
we need to impose some conditions on g(z). First, we consider applying the
condition f(z0(0)) = 1. From (14), this implies g(z0(0))/|g(z0(0))| = i, which
means

Re [g(z0(0))] = 0, (27)

Im [g(z0(0))/|g(z0(0)|] = 1. (28)

Next we consider equation (12). Upon differentiation and taking modulus to
both sides of equation (12), gives

|T (z0(t))f
′(z0(t))z

′
0(t)| = |T (z0(t))e

iθ0(t)iθ′0(t)| = |θ′0(t)|. (29)

Since the boundary correspondence function θ0(t) is an increasing monotone
function it’s derivative is positive which implies |θ′0(t)| = θ′0(t). Upon integrat-
ing (29) with respect to t form 0 to 2π gives∫ 2π

0

|g(z0(t))z
′
0(t)|dt =

∫ 2π

0

θ′0(t)dt = θ0(t)|2π
0 = 2π. (30)

By the same reasoning, it can be shown that∫ 2π

0

|g(z1(t))z
′
1(t)|dt = 2πμ1. (31)
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We note that, Mohamed [10, p. 75-82] however did not use the conditions
(26), (27), (28), (30) and (31) to achieve uniqueness, but instead

μ1

∫ 2π

0

|g(z0(t))z
′
0(t)|dt −

∫ 2π

0

|g(z1(t))z
′
1(t)|dt = 0

and
f ′(z∗) = B∗

where B∗ is predetermined.
Thus the system of integral equations comprising of (23), (24), (26) with

the conditions (27), (28), (30) and (31) has a unique solution.

3.2 Conformal Mapping of Triply Connected Regions

For the special case where Ω is a triply connected regions being mapped onto
an annulus with a concentric circular slit, the single integral equation in (22)
can be separated into a system of equations

g(z0) +

∫
Γ0

N(z0, w)g(w)|dw| −
∫
−Γ1

P0(z0, w)g(w)|dw|

−
∫
−Γ2

Q0(z0, w)g(w)|dw| = 0, z0 ∈ Γ0, (32)

g(z1) +

∫
Γ0

P1(z1, w)g(w)|dw| −
∫
−Γ1

N(z1, w)g(w)|dw|

−
∫
−Γ2

Q1(z1, w)g(w)|dw| = 0, z1 ∈ Γ1, (33)

g(z2) +

∫
Γ0

P2(z2, w)g(w)|dw| −
∫
−Γ1

Q2(z2, w)g(w)|dw|

−
∫
−Γ2

N(z2, w)g(w)|dw| = 0, z2 ∈ Γ2, (34)

where

Q0(z, w) =
1

2πi

[
T (z)

(z − w)
− T (z)

μ2
2(z − w)

]
,

Q1(z, w) =
1

2πi

[
T (z)

(z − w)
− μ2

1

μ2
2

T (z)

(z − w)

]
,

P2(z, w) =
1

2πi

[
T (z)

(z − w)
− μ2

2T (z)

(z − w)

]
,

Q2(z, w) =
1

2πi

[
T (z)

(z − w)
− μ2

2

μ2
1

T (z)

(z − w)

]
.
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As in the doubly connected case, several additional conditions are required to
help achieve uniqueness. The single-valuedness requirement on the mapping
function f(z) implies∫

−Γ1

g(w)|dw| = 0,

∫
−Γ2

g(w)|dw| = 0. (35)

The set of equation (32) to (35) does not guarantee a unique solution. The
conditions (27), (28), (30) and (31) are also valid for the triply connected case
under consideration. If the triply connected region is symmetric with respect
to the axes, we can also impose the conditions

Re [g(z1(0))] = 0, (36)

Re [g(z2(0))] = 0. (37)

4 Numerical Implementation

In this section we first describe in detail a numerical method for computing
the mapping function f(z) and μ1 for the case of a doubly connected region.
Using the parametric representations z0(t) of Γ0 for t : 0 ≤ t ≤ β0 and z1(t)
of −Γ1 for t : 0 ≤ t ≤ β1 the system of integral equation (23), (24), (26), (30)
and (31) become

g(z0(t)) +

∫ β0

0

N(z0(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

P (z0(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z0(t) ∈ Γ0, (38)

g(z1(t)) +

∫ β0

0

Q(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

N(z1(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z1(t) ∈ Γ1, (39)∫ β1

0

g(z1(s))|z′1(s)|ds = 0, (40)∫ β0

0

|g(z0(s))z
′
0(s)|ds = 2π, (41)∫ β1

0

|g(z1(s))z
′
1(s)|ds = 2πμ1. (42)

Multiply (38) and (39) respectively by |z′0(t)| and |z′1(t)| gives

|z′0(t)|g(z0(t)) +

∫ β0

0

|z′0(t)|N(z0(t), z0(s))g(z0(s))|z′0(s)|ds
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−
∫ β1

0

|z′0(t)|P (z0(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z0(t) ∈ Γ0, (43)

|z′1(t)|g(z1(t)) +

∫ β0

0

|z′1(t)|Q(z1(t), z0(s))g(z0(s))|z′0(s)|ds

−
∫ β1

0

|z′1(t)|N(z1(t), z1(s))g(z1(s))|z′1(s)|ds = 0, z1(t) ∈ Γ1. (44)

Defining

φ0(t) = |z′0(t)|g(z0(t)),

φ1(t) = |z′1(t)|g(z1(t)),

K00(t0, s0) = |z′0(t)|N(z0(t), z0(s)),

K01(t0, s1) = |z′0(t)|P (z0(t), z1(s)),

K10(t1, s0) = |z′1(t)|Q(z1(t), z0(s)),

K11(t1, s1) = |z′1(t)|N(z1(t), z1(s)),

the system of equations (43), (44), (40), (41), (42), (27) and (28) can be briefly
written as

φ0(t) +

∫ β0

0

K00(t0, s0)φ0(s)ds −
∫ β1

0

K01(t0, s1)φ1(s)ds = 0, (45)

φ1(t) +

∫ β0

0

K10(t1, s0)φ0(s)ds −
∫ β1

0

K11(t1, s1)φ1(s)ds = 0, (46)∫ β1

0

φ1(s)ds = 0, (47)∫ β0

0

|φ0(s)|ds = 2π, (48)∫ β1

0

|φ1(s)|ds = 2πμ1, (49)

Re φ0(0) = 0, (50)

Im [φ0(0)/|φ0(0)|] = 1. (51)

Since the functions φ and K in the above systems are β-periodic, a reliable
procedure for solving (45) to (49) numerically is by using the Nyström’s method
[2] with the trapezoidal rule . The trapezoidal rule is the most accurate method
for integrating periodic functions numerically [4, p. 134-142]. We choose
β0 = β1 = 2π and n equidistant collocation points ti = (i − 1)β0/n, 1 ≤ i ≤ n
on Γ0 and m equidistant collocation points t̃i = (̃i − 1)β1/m, 1 ≤ ĩ ≤ m, on
Γ1. Applying the Nyström’s method with trapezoidal rule to discretize (45) to
(49), we obtain

φ0(ti) +
β0

n

n∑
j=1

K00(ti, tj)φ0(tj) − β1

m

m∑
j̃=1

K01(ti, tj̃)φ1(tj̃) = 0, (52)
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φ1(t̃i) +
β0

n

n∑
j=1

K10(t̃i, tj)φ0(tj) − β1

m

m∑
j̃=1

K11(t̃i, tj̃)φ1(tj̃) = 0, (53)

m∑
j̃=1

φ1(tj̃) = 0, (54)

n∑
j=1

|φ0(tj)| = n, (55)

n∑
j=1

|φ1(tj)| = nμ1. (56)

Equations (52) to (56) lead to a system of (n + m + 3) non-linear complex
equations in n unknowns φ0(ti), m unknowns φ1(t̃i) and μ1. By defining the
matrices

Bij =
β0

n
K00(ti, tj), Cij̃ =

β1

m
K01(ti, tj̃),

Dĩj =
β0

n
K10(t̃i, tj), Eĩj̃ =

β1

m
K11(t̃i, tj̃),

x0i = φ0(ti), x1̃i = φ1(t̃i),

the system of equations (52) and (53) can be written as n+m by n+m system
of equations

[Inn + Bnn]x0n − Cnmx1m = 0, (57)

Dmnx0n + [Imm − Emm]x1m = 0. (58)

The result in matrix form for the system of equations (57) and (58) is

⎛
⎜⎝

Inn + Bnn · · · −Cnm
... · · · ...

Dmn · · · Imm − Emm

⎞
⎟⎠

⎛
⎜⎝

x0n
...

x1m

⎞
⎟⎠ =

⎛
⎜⎝

00n
...

01m

⎞
⎟⎠ . (59)

Defining

A =

⎛
⎜⎝

Inn + Bnn · · · −Cnm
... · · · ...

Dmn · · · Imm − Emm

⎞
⎟⎠ , x=

⎛
⎜⎝

x0n
...

x1m

⎞
⎟⎠ and 0 =

⎛
⎜⎝

00n
...

01m

⎞
⎟⎠,

the (n+m)× (n+m) system can be written briefly as Ax = 0. Separating A
and x in terms of the real and imaginary parts, the system can be written as

ReARex − ImA Imx + i( ImARex + ReA Imx) = 0 + 0i. (60)
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The single (n + m) × (n + m) complex system (60) above is equivalent to the
2(n+m)×2(n+m) system matrix involving the real (Re) and imaginary (Im)
of the unknown functions, i.e.,⎛

⎜⎝
Re A · · · Im A

... · · · ...
Im A · · · Re A

⎞
⎟⎠

⎛
⎜⎝

Re x
...

Im x

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠ . (61)

Note that the matrix in (61) contains the unknown parameter μ1.
Since φ = Re φ + i Imφ, equations (54), (55), (56), (50) and (51) becomes

m∑
j̃=1

(Rex1j̃ + i Imx1j̃) = 0, (62)

n∑
j=1

√
(Rex0j)2 + (Im x0j)2 = n, (63)

m∑
j̃=1

√
(Rex1j̃)

2 + (Im x1j̃)
2 = nμ1, (64)

Rex01 = 0, (65)

Im [x01/
√

(Rex01)2 + (Im x01)2] = 1. (66)

We next proceed to solve simultaneously the real nonlinear system in (61)
with the equations (62) to (66) which also involves the Re and Im parts of
the unknown functions. This system is an over-determined system of non-
linear equations involving 2(n + m) + 5 equations in 2(n + m) + 1 unknowns.
Methods for solving over-determined system are best dealt with as problems in
optimization [21, p. 146]. We use a modification of the Gauss-Newton called
the Lavenberg-Marquardt with the Fletcher’s algorithm [19, p. 233-246] to
solve this nonlinear least square problem. Our nonlinear least square problem
consists in finding the vector x for which the function S : R2(n+m)+5 → R1

defined by the sum of squares

S(x) = fTf =

2(n+m)+5∑
i=1

(fi(x))2

is minimal. Here, x stands for the 2(n + m) + 1 vector (Re x01, Re x02, ...,
Re x0n, Re x11, Re x12, ..., Re x1m, Im x01, Im x02, ..., Im x0n, Im x11, Im x12,
..., Im x1m, μ1), and f = (f1, f2, ..., f2(n+m)+5). The Lavenberg-Marquardt algo-
rithm is an iterative procedure with starting value denoted as x0. This initial
approximation, which, if at all possible, should be well-informed guess and
generate a sequence of approximations x1, x2, x3, ... base on the formula

xk+1 = xk − H(xk)f(xk), λk ≥ 0, (67)
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where H(xk) = ((Jf (xk))
T Jf (xk) + λkI)−1(Jf (xk))

T .
Our strategy for getting the initial estimation x0 is based on (12) and (13)
which upon differentiating, we obtain

φ0(t) = f ′(z0(t))z
′
0(t) = iθ′0(t)e

iθ0(t),

φ1(t) = f ′(z1(t))z
′
1(t) = μ1iθ

′
1(t)e

iθ1(t).

For initial estimation, we assume θ0(t) = θ1(t) = t which implies θ′0(t) =
θ′1(t) = 1 and choose μ1 = 0.5 as our initial guess of the inner radius. In all our
experiments, we have chosen the number of collocation points on Γ0 and Γ1 be-
ing equal, i.e., n = m. Having solved the system of equations for the unknown
functions φ0(t) = |z′0(t)|T (z0(t))f

′(z0(t)), φ1(t) = |z′1(t)|T (z1(t))f
′(z1(t)) and

μ1, the boundary correspondence functions θ0(t) and θ1(t) are then computed
approximately by the formulas

θ0(t) = Arg f(z0(t)) ≈ Arg (−iφ0(t)),

θ1(t) = Arg f(z1(t)) ≈ Arg (−iφ1(t)).

We note that the numerical implementation described here are basically the
same as in Mohamed [10] but with set of conditions different from (47) to (51).

Once the boundary values of the mapping function f are known, the val-
ues of the mapping function may be calculated by quadrature at any interior
points of its domain of definition through Cauchy’s integral formula for doubly
connected region which read as follows:

Theorem 4.1 (Cauchy’s Integral Formula) Let f be analytic on the
boundaries Γ = Γ0 ∪ Γ1 and the region Ω bounded by Γ0 and Γ1. If ζ is
any point on Ω, then

f(ζ) =
1

2πi

∫
Γ

f(z)

z − ζ
dz

=
1

2πi

∫
Γ0

f(z)

z − ζ
dz − 1

2πi

∫
−Γ1

f(z)

z − ζ
dz. (68)

The Cauchy’s integral formula (68) can be also written in the parametrized
form, i.e.

f(ζ) =
1

2πi

∫ β0

0

f(z0(t))z
′
0(t)

z0(t) − ζ
dt − 1

2πi

∫ β1

0

f(z1(t))z
′
1(t)

z1(t) − ζ
dt. (69)

By means of (12) and (13), the Cauchy’s integral formula (68) can then be
written in the form

f(ζ) =
1

2πi

∫ β0

0

eiθ0(t)z′0(t)
z0(t) − ζ

dt − 1

2πi

∫ β1

0

μ1e
iθ1(t)z′1(t)

z1(t) − ζ
dt. (70)
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For the points which are not close to the boundary, the integrands are well
behaved. However for points near the boundary, the numerical integration is
inaccurate due to the influence of the singularity. This difficulty is overcome
through the introduction of an iterative technique as given in [17, p. 303]. If
we define f0(ζ) to be f(z) where z is a point on the boundary which is closest
to ζ , then we can define

fk+1(ζ) =
1

2πi

∫
Γ

f(z) − fk(ζ)

z − ζ
dz + fk(ζ). (71)

In practice the iteration converges rapidly. Using this technique, we are able
to maintain the same accuracy throughout the region Ω.

The numerical implementation for the case where Ω is a triply connected
regions being mapped onto an annulus with concentric circular slit is similar
with doubly connected regions.

5 Numerical Results

For numerical experiments, we have used some common test regions based
on the examples given in [1, 5, 8, 10, 11, 15, 18]. All the computations are
done using MATHEMATICA package [20] in single precision (16 digit machine
precision).

5.1 Doubly Connected Regions

We have used four test regions whose exact boundary correspondence functions
are known. The test regions are circular frame, frame of Limacon, elliptic frame
and frame of Cassini’s oval. N number of collocation points on each boundary
has been chosen. The results for the sub-norm error between the exact values
of θ0(t), θ1(t), μ1 and their corresponding approximations θ0n(t), θ1n(t), μ1n

are shown in Tables 1, 5, 9 and 13. The numerical computations for these
regions are compared with those obtained by Murid and Mohamed [11], and
Mohamed [10] based on the Kerzman-Stein and Neumann kernels. We also
compare our numerical results with those obtained by Amano [1] and Symm
[18], though their distribution are different from ours. The notation EM and
EA that are used by Amano and Symm are defined as follows:

EM = max{max
i

||f (z0(ti))| − 1|, max
i

||f (z1(ti))| − μ1|},
EA = max{‖θ0(t) − θ0n(t)‖∞, ‖θ1(t) − θ1n(t)‖∞}.

Some integral equations do not involve the modulus μ−1
1 of the given doubly

connected region such as the Warschawski’s and Gershgorin’s integral equa-
tions. In such cases, the functions θ0(t), θ1(t) are determined first. Then, the
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modulus is computed from the following formula [6, p. 461-468]

Log
1

μ1
= Log

∣∣∣∣z0(0) − ω

z1(0) − ω

∣∣∣∣ − 1

2π

∫ β0

0

Re
z′0(t)

z0(t) − ω
θ0(t)dt

+
1

2π

∫ β1

0

Re
z′1(t)

z1(t) − ω
θ1(t)dt, (72)

for ω is a any arbitrary point z interior to Γ1.
In this paper we have used our computed solutions θ0n(t) and θ1n(t) to

approximate μ1, represented by μ∗
1n, based on the formula (72). Since θ0n(t)

and θ1n(t) are computed based on Nyström’s method with trapezoidal rule,
the approximation μ∗

1n is calculated by means of

Log
1

μ∗
1n

= Log

∣∣∣∣z0(0) − ω

z1(0) − ω

∣∣∣∣ − 1

n

n∑
i=1

Re
z′0(ti)

z0(ti) − ω
θ0(ti)

+
1

n

n∑
i=1

Re
z′1(ti)

z1(ti) − ω
θ1(ti). (73)

The error norm ‖μ1 − μ∗
1n‖ are also displayed in the tables.

Example 5.1 Frame of Cassini’s Oval :
If Ω is the region bounded by two Cassini’s oval, then the complex parametric
equation of its boundary is given by [1],

Γ0 : {z(t) =

√
b2
0 cos 2t +

√
a4

0 − b4
0 sin2 2t eit, a0 > 0, b0 > 0},

Γ1 : {z(t) =

√
b2
1 cos 2t +

√
a4

1 − b4
1 sin2 2t eit, a1 > 0, b1 > 0}, 0 ≤ t ≤ 2π.

such that

Ω : |z2 − b2
0| < a2

0, |z2 − b2
1| > a2

1,

The boundaries Γ0 and Γ1 are chosen such that (a4
0 − b4

0)/b
2
0 = (a4

1 − b4
1)/b

2
1.

Then the exact mapping function is given by

f(z) =
a0z√

b2
0z

2 + a4
0 − b4

0

, μ1 =
a0b1

a1b0
.

Figure 3 shows the region and image based on our method. Tables 1, 2, 3
and 4 show our results together with the results of Murid and Mohamed [11],
Mohamed [10], Amano [1] and Symm [18].
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Figure 3: Frame of Cassini’s Oval : a rectangular grid in Ω with grid size 0.25
and its image with a0 = 2

√
14, a1 = 2, b0 = 7, and b1 = 1.

Table 1: Error Norm (Frame of Cassini’s oval) using our method

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞ ‖μ1 − μ∗
1n‖∞

16 6.3(−03) 1.9(−03) 1.5(−03) 3.7(−03)
32 6.0(−05) 1.6(−05) 1.3(−05) 2.0(−03)
64 3.2(−08) 1.2(−08) 1.8(−09) 5.4(−04)
128 1.9(−08) 7.1(−09) 0 1.3(−04)

Table 2: Error Norm (Frame of Cassini’s oval) as given in [10] based on the
Neumann kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 6.4(−03) 1.9(−03) 1.5(−03)
32 does not converge
64 3.1(−02) 1.9(−02) 8.9(−07)

Table 3: Error Norm (Frame of Cassini’s oval) as given in [10, 11] based on
the Kerzman-Stein kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 6.4(−03) 2.5(−03) 2.1(−03)
32 6.9(−05) 2.7(−05) 2.1(−05)
64 1.1(−08) 3.7(−09) 3.9(−09)

Example 5.2 Elliptic Frame :
Elliptic frame is the domain bounded by two Jordan curves, Γ0 and Γ1 such
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Table 4: Error Norm (Frame of Cassini’s oval) using Amano’s method and
Symm’s method

Amano’s Method Symm’s Method
N EM EA N EM

16 9.1(−03) 9.7(−03) 64 1.94(−02)
32 3.4(−04) 3.8(−04) 128 3.00(−03)
64 6.9(−07) 5.0(−08) 256 7.00(−04)
128 7.7(−11) 7.7(−11)

that

Ω :
x2

a2
0

+
y2

b2
0

< 1,
x2

a2
1

+
y2

b2
1

> 1,

with the complex parametric of its boundary is given by [1]

Γ0 : {z(t) = a0 cos t + ib0 sin t, a0 > 0, b0 > 0},
Γ1 : {z(t) = a1 cos t + ib1 sin t, a1 > 0, b1 > 0}, 0 ≤ t ≤ 2π.

When the two ellipses Γ0 and Γ1 are confocal such that a2
0 − b2

0 = a2
1 − b2

1, the
exact mapping function is given by

f(z) =
z +

√
z2 − (a2

0 − b2
0)

a0 + b0

, μ1 =
a1 + b1

a0 + b0

.

Figure 4 shows the region and image based on our method. Tables 5, 6, 7
and 8 show our results together with the results of Murid and Mohamed [11],
Mohamed [10], Amano [1] and Symm [18].
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Figure 4: Elliptic Frame : a rectangular grid in Ω with grid size 0.25 and its
image with a0 = 7, a1 = 5, b0 = 5 and b1 = 1.
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Table 5: Error Norm (Elliptic Frame) using our method

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞ ‖μ1 − μ∗
1n‖∞

16 2.3(−03) 6.6(−03) 2.0(−04) 9.4(−03)
32 3.5(−06) 9.9(−06) 3.6(−06) 1.1(−03)
64 1.9(−08) 1.7(−08) 7.0(−12) 1.9(−04)
128 7.6(−09) 6.7(−09) 5.6(−17) 4.7(−05)

Table 6: Error Norm (Elliptic frame) as given in [10] based on the Neumann
kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 1.1 3.1 7.2(−02)
32 2.3(−05) 2.4(−05) 3.0(−06)
64 1.3(−07) 1.5(−07) 7.0(−12)

Table 7: Error Norm (Elliptic frame) as given in [10, 11] based on the Kerzman-
Stein kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 4.0(−04) 3.2(−04) 3.7(−05)
32 5.1(−06) 1.0(−05) 3.7(−06)
64 2.7(−09) 5.9(−09) 2.2(−09)
128 3.6(−15) 5.8(−15) 1.8(−15)

Table 8: Error norm (Elliptic frame) using Amano’s method and Symm’s
method

Amano’s Method Symm’s Method
N EM EA N EM

16 2.8(−02) 3.8(−03) 64 2.52(−02)
32 3.2(−03) 7.0(−04) 128 3.90(−03)
64 8.4(−05) 2.7(−05) 256 6.00(−04)
128 1.2(−07) 1.8(−07)

Example 5.3 Frame of Limacon :
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Consider a pair of Limacon [9, p. 307]

Γ0 : {z(t) = a0 cos t + b0 cos 2t + i(a0 sin t + b0 sin 2t), a0 > 0, b0 > 0},
Γ1 : {z(t) = a1 cos t + b1 cos 2t + i(a1 sin t + b1 sin 2t), a1 > 0, b1 > 0},

where t : 0 ≤ t ≤ 2π. When b1/b0 = (a1/a0)
2, the exact map is given by

f(z) =

√
a2

0 + 4b0z − a0

2b0

,

which maps Γ0 onto the unit circle and maps Γ1 onto a circle of radius μ1 =
a1/a0. Figure 5 shows the region and image based on our method. Table 9, 10,
11 and 12 show our results together with the results of Murid and Mohamed
[11], Mohamed [10] and Symm [18].
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Figure 5: Frame of Limacons : a rectangular grid in Ω with grid size 0.4 and
its image with a0 = 10, a1 = 5, b0 = 3 and b1 = b0/4.

Table 9: Error Norm (Frame of Limacon) using our method

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞ ‖μ1 − μ∗
1n‖∞

8 7.4(−04) 4.8(−04) 4.1(−03) 1.7(−03)
16 4.2(−06) 1.5(−06) 1.5(−05) 4.1(−04)
32 7.3(−11) 2.5(−11) 2.4(−10) 1.0(−04)
64 8.9(−16) 8.9(−16) 0 2.6(−05)
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Table 10: Error Norm (Frame of Limacon) as given in [10] based on the Neu-
mann kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 1.0(−05) 6.9(−06) 1.5(−05)
32 2.2(−09) 2.8(−09) 4.7(−10)
64 7.0(−09) 5.3(−09) 5.7(−10)

Table 11: Error Norm (Frame of Limacon) as given in [10, 11] based on the
Kerzman-Stein kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
16 9.7(−06) 5.1(−06) 2.8(−05)
32 4.2(−10) 3.1(−10) 2.1(−10)
64 1.3(−15) 1.8(−15) 1.1(−16)

Table 12: Error Norm (Frame of Limacon) using Symm’s method

N 64 128 256
EM 6.3(−03) 1.0(−03) 2.0(−04)

Example 5.4 Circular Frame :
Consider a pair of circles [16, A-21]

Γ0 : {z(t) = eit},
Γ1 : {z(t) = c + ρeit}, t : 0 ≤ t ≤ 2π

such that the domain bounded by Γ0 and Γ1 is the domain between a unit
circle and a circle center at c with radius ρ. The exact mapping function is
given by

f(z) =
z − λ

λz − 1
, with λ =

2c

1 + (c2 − ρ2) +
√

(1 − (c − ρ)2)(1 − (c + ρ)2)
,

which maps Γ0 onto the unit circle and Γ1 onto a circle of radius

μ1 =
2ρ

1 − (c2 − ρ2) +
√

(1 − (c − ρ)2)(1 − (c + ρ)2)
.
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Figure 6 shows the region and image based on our method. Table 13, 15 and
14 show our results together with the results of Murid and Mohamed [11] and
Mohamed [10].
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Figure 6: Circular Frame : a rectangular grid in Ω with grid size 0.05 and its
image with c = 0.3 and ρ = 0.1.

Table 13: Error Norm (Circular Frame) using our method

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞ ‖μ1 − μ∗
1n‖∞

4 5.1(−02) 1.1(−01) 2.6(−03) 1.6(−02)
8 8.7(−04) 1.7(−04) 3.7(−05) 3.7(−03)
16 1.3(−07) 2.5(−08) 4.7(−09) 8.8(−04)
32 1.3(−15) 8.9(−16) 4.2(−17) 2.2(−04)

Table 14: Error Norm (Circular Frame) as given in Mohamed [10] based on
the Neumann kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
8 3.6(−04) 6.9(−06) 5.1(−06)
16 3.7(−08) 7.2(−10) 6.2(−10)
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Table 15: Error Norm (Circular Frame) as given in [10, 11] based on the
Kerzman-Stein kernel

N ‖θ0(t) − θ0n(t)‖∞ ‖θ1(t) − θ1n(t)‖∞ ‖μ1 − μ1n‖∞
8 9.8(−11) 4.6(−09) 1.4(−06)
16 8.9(−16) 7.1(−15) 9.5(−11)

5.2 Triply Connected Regions

For our numerical examples involving triply connected regions, we have used
two test regions, namely the regions bounded by an ellipse and two circles, and
a region bounded by two ellipses and a circle. N number of collocation points
on each boundary has been chosen. Since the exact mapping functions for
the regions are unknown, we have compared our nemerical results with those
obtained in [5, 8, 15].

Example 5.5 Ellipse/two circles :
Let

Γ0 : {z(t) = 2 cos t + i sin t},
Γ1 : {z(t) = 0.5 (cos t + i sin t)},
Γ2 : {z(t) = 1.2 + 0.3 (cos t + i sin t)}, t : 0 ≤ t ≤ 2π.

We have adopted the example problems from Reichel [15] and Kokkinos et al .
[8] for comparison of μ1, μ2 and the angle of the slit, α (see Table 16). We
obtain the results μ1 = 0.42588654195460685, μ2 = 0.810970795718853 and
α = 0.715608. Since the conditions of the problems are somewhat different,
μ0 = 1 in ours and μ0 = 1.5 in Reichel’s or μ0 = 2 in Kokkinos et al., our radii
μ1 and μ2 should be multiplied by 1.5 and 2 respectively. Values of μ1 and
μ2 in Reichel [15] are denoted here by μ1,R and μ2,R respectively. While the
values of μ1, μ2 and α in Kokkinos et al . [8] are denoted here by μ1,K , μ2,K

and αK respectively. Figure 7 shows the region and its image based on our
method.
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Figure 7: Ellipse/two circles : a rectangular grid in Ω with grid size 0.05 and
its image.

Table 16: Radii comparison for Example 5.5 with [8, 15]

Reichel [15]
N ‖μ1 × 1.5 − μ1,R‖∞ ‖μ2 × 1.5 − μ2,R‖∞
16 1.4(−03) 1.3(−02)
32 9.8(−07) 6.6(−06)
64 8.6(−09) 4.9(−09)

Kokkinos et al. [8]
N ‖μ1 × 2 − μ1,K‖∞ ‖μ2 × 2 − μ2,K‖∞ ‖α − αK‖∞
16 1.4(−03) 1.3(−02) 8.7(−01)
32 9.7(−07) 6.6(−06) 1.3(−03)
64 2.0(−09) 7.1(−10) 2.8(−05)

Example 5.6 Ellipse/Circle/Ellipse :
Let

Γ0 : {z(t) = 2 cos t + i sin t},
Γ1 : {z(t) = 0.25 (cos t + i sin t)},
Γ2 : {z(t) = 1 + 0.5 cos t + 0.25i sin t}, t : 0 ≤ t ≤ 2π.

We have adopted the example problem from Ellacott [5] for comparison.
Values of μ1 and μ2 in Ellacott [5] are denoted here by μ1,E and μ2,E respec-
tively. See Table 17 for radii comparisons. Figure 8 shows the region and its
image based on our method.
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Figure 8: Ellipse/circle/ellipse : a rectangular grid in Ω with grid size 0.05
and its image.

Table 17: Radii comparison for Example 5.6 with [5]

N Our Method Ellacott [5] Radii Comparison
64 μ1 = 0.2406123854673435 μ1,E = 0.25 9.4(−03)

μ2 = 0.6859816257842841 μ2,E = 0.68 6.0(−03)

6 Conclusion

In this paper, we have constructed a new boundary integral equation for con-
formal mapping of regions of connectivity M +1 onto an annulus μ1 < |w| < 1
with circular slits of radii μ2, ..., μM . The boundary integral equation involves
the Neumann kernel and the unknown radii μ1, ..., μM . Due to the presence
of the unknown radii and together with some normalizing conditions, the dis-
cretized integral equation leads to a system of nonlinear algebraic equations
which are solved using optimization method. Several mappings of the test re-
gions were computed numerically using the proposed method. The advantage
of our method is that it calculates the boundary correspondence functions and
the unknown radii simultaneously with the same degree of accuracy. Having
computed the boundary values of the mapping function, the interior values
are then calculated by means of the Cauchy integral formula. The numercial
examples show the effectiveness of the proposed method.
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