Interval-Valued Fuzzy BF-Algebras

A. Zarandi1 and A. Borumand Saeid2

1Dept. of Mathematics, Islamic Azad University of Kerman
Kerman, Iran
zarandi@iauk.ac.ir

2Dept. of Mathematics, Shahid Bahonar University of Kerman
Kerman, Iran
arsham@mail.uk.ac.ir

Abstract

In this note the notion of interval-valued fuzzy BF-algebras (briefly, i-v fuzzy BF-algebras), the level and strong level BF-subalgebra is introduced. Then we state and prove some theorems which determine the relationship between these notions and BF-subalgebras. The images and inverse images of i-v fuzzy BF-subalgebras are defined, and how the homomorphic images and inverse images of i-v fuzzy BF-subalgebra becomes i-v fuzzy BF-algebras are studied.

Mathematics Subject Classification: 03B52, 03G25, 06F35, 94D05

Keywords: BF-algebra, fuzzy BF-subalgebra, interval-valued fuzzy set, interval-valued fuzzy BF-subalgebra

1 Introduction

In 1966, Y. Imai and K. Iseki [5] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [4] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebra. They shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Y. Imai and K. Iseki [4] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [8], J. Neggers and H. S. Kim introduced the notion of B-algebras, which is a generalization of BCK-algebra. In [7], Y. B. Jun , E. H. Roh , and H. S. Kim introduced BH-algebras, which
are a generalization of $BCK/BCI/B$-algebras. Recently, Andrzej Walendziak defined a BF-algebra [10].

In [11], Zadeh made an extension of the concept of a fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). This interval-valued fuzzy set is referred to as an i-v fuzzy set, also he constructed a method of approximate inference using his i-v fuzzy sets. Biswas [1], defined interval-valued fuzzy subgroups and S. M. Hong et. al. applied the notion of interval-valued fuzzy to BCI-algebras [3].

In the present paper, we using the notion of interval-valued fuzzy set and introduced the concept of interval-valued fuzzy Q-subalgebras (briefly i-v fuzzy BF-subalgebras) of a BF-algebra, and study some of their properties. We prove that every BF-subalgebra of a BF-algebra X can be realized as an i-v level BF-subalgebra of an i-v fuzzy BF-subalgebra of X, then we obtain some related results which have been mentioned in the abstract.

2 Preliminary Notes

Definition 2.1. [10] A BF-algebra is a non-empty set X with a consonant 0 and a binary operation $*$ satisfying the following axioms:

(I) $x * x = 0$,
(II) $x * 0 = x$,
(III) $0 * (x * y) = (y * x)$,
for all $x, y \in X$.

Example 2.2. [10] (a) Let R be the set of real numbers and let $A = (R; *, 0)$ be the algebra with the operation $*$ defined by

$$x * y = \begin{cases} x & \text{if } y = 0, \\ y & \text{if } x = 0, \\ 0 & \text{otherwise} \end{cases}$$

Then A is a BF-algebra.

(b) Let $A = [0; \infty)$. Define the binary operation $*$ on A as follows: $x * y = |x - y|$, for all $x, y \in A$. Then $(A; *, 0)$ is a BF-algebra.

Definition 2.3. [10] Let X be a BF-algebra. Then for any x and y in X, the following hold:

(a) $0 * (0 * x) = x$ for all $x \in A$;
(b) if $0 * x = 0 * y$, then $x = y$ for any $x, y \in A$;
(c) if $x * y = 0$, then $y * x = 0$ for any $x, y \in A$.
Definition 2.4. [10] A non-empty subset S of a BF-algebra X is called a subalgebra of X if $x \ast y \in S$ for any $x, y \in S$.

A mapping $f : X \rightarrow Y$ of BF-algebras is called a BF-homomorphism if $f(x \ast y) = f(x) \ast f(y)$ for all $x, y \in X$.

We now review some fuzzy logic concept (see [10]).

Let X be a set. A fuzzy set A in X is characterized by a membership function $\mu_A : X \rightarrow [0, 1]$. Let f be a mapping from the set X to the set Y and let BF be a fuzzy set in Y with membership function μ_B.

The inverse image of BF, denoted $f^{-1}(B)$, is the fuzzy set in X with membership function $\mu_{f^{-1}(B)}$ defined by $\mu_{f^{-1}(B)}(x) = \mu_B(f(x))$ for all $x \in X$.

Conversely, let A be a fuzzy set in X with membership function μ_A Then the image of A, denoted by $f(A)$, is the fuzzy set in Y such that:

$$\mu_{f(A)}(y) = \begin{cases} \sup_{z \in f^{-1}(y)} \mu_A(z) & \text{if } f^{-1}(y) = \{x : f(x) = y\} \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

A fuzzy set A in the BF-algebra X with the membership function μ_A is said to be have the sup property if for any subset $T \subseteq X$ there exists $x_0 \in T$ such that

$$\mu_A(x_0) = \sup_{t \in T} \mu_A(t)$$

An interval-valued fuzzy set (briefly, i-v fuzzy set) A defined on X is given by

$$A = \{(x, [\mu^L_A(x), \mu^U_A(x)]), \forall x \in X \}.$$

Briefly, denoted by $A = [\mu^L_A, \mu^U_A]$ where μ^L_A and μ^U_A are any two fuzzy sets in X such that $\mu^L_A(x) \leq \mu^U_A(x)$ for all $x \in X$.

Let $\overline{\mu}_A(x) = [\mu^L_A(x), \mu^U_A(x)]$, for all $x \in X$ and let $D[0, 1]$ denotes the family of all closed sub-intervals of $[0, 1]$. It is clear that if $\mu^L_A(x) = \mu^U_A(x) = c$, where $0 \leq c \leq 1$ then $\overline{\mu}_A(x) = [c, c]$ is in $D[0, 1]$. Thus $\overline{\mu}_A(x) \in D[0, 1]$, for all $x \in X$. Therefore the i-v fuzzy set A is given by

$$A = \{(x, \overline{\mu}_A(x))\}, \forall x \in X$$

where

$$\overline{\mu}_A : X \rightarrow D[0, 1]$$

Now we define refined minimum (briefly, rmin) and order ” \leq ” on elements $D_1 = [a_1, b_1]$ and $D_2 = [a_2, b_2]$ of $D[0, 1]$ as:

$$\text{rmin}(D_1, D_2) = [\text{min}\{a_1, a_2\}, \text{min}\{b_1, b_2\}]$$

\[D_1 \leq D_2 \iff a_1 \leq a_2 \land b_1 \leq b_2 \]

Similarly we can define \(\geq \) and \(= \).

Definition 2.3. [2] Let \(\mu \) be a fuzzy set in a BF-algebra. Then \(\mu \) is called a fuzzy BF-subalgebra (BF-algebra) of \(X \) if

\[\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\} \]

for all \(x, y \in X \).

Proposition 2.4. [2] Let \(f \) be a BF-homomorphism from \(X \) into \(Y \) and \(G \) be a fuzzy BF-subalgebra of \(Y \) with the membership function \(\mu_G \). Then the inverse image \(f^{-1}(G) \) of \(G \) is a fuzzy BF-subalgebra of \(X \).

Proposition 2.5. [2] Let \(f \) be a BF-homomorphism from \(X \) onto \(Y \) and \(D \) be a fuzzy BF-subalgebra of \(X \) with the sup property. Then the image \(f(D) \) of \(D \) is a fuzzy BF-subalgebra of \(Y \).

3 Interval-valued Fuzzy BF-algebra

From now on \(X \) is a BF-algebra, unless otherwise is stated.

Definition 3.1. An i-v fuzzy set \(A \) in \(X \) is called an interval-valued fuzzy BF-subalgebras (briefly i-v fuzzy BF-subalgebra) of \(X \) if:

\[\overline{\pi}_A(x \ast y) \geq \text{rmin}\{\overline{\pi}_A(x), \overline{\pi}_A(y)\} \]

for all \(x, y \in X \).

Example 3.2. Let \(X = \{0, 1, 2, 3\} \) be a set with the following table:

<table>
<thead>
<tr>
<th>(\ast)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X, \ast, 0) \) is a BF-algebra, which is not a BCH/BCI/BCK-algebra.

Define \(\overline{\pi}_A \) as:

\[\overline{\pi}_A(x) = \begin{cases} [0.3, 0.9] & \text{if } x \in \{0, 2\} \\ [0.1, 0.6] & \text{Otherwise} \end{cases} \]
It is easy to check that A is an i-v fuzzy BF-subalgebra of X.

Lemma 3.3. If A is an i-v fuzzy BF-subalgebra of X, then for all $x \in X$

$$
\overline{\mu}_A(0) \geq \overline{\mu}_A(x).
$$

Proof. For all $x \in X$, we have

\[
\begin{align*}
\overline{\mu}_A(0) &= \overline{\mu}_A(x \ast x) \geq r\min\{\overline{\mu}_A(x), \overline{\mu}_A(x)\} \\
&= r\min\{[\mu^L_A(x), \mu^U_A(x)], [\mu^L_A(x), \mu^U_A(x)]\} \\
&= [\mu^L_A(x), \mu^U_A(x)] = \overline{\mu}_A(x).
\end{align*}
\]

Proposition 3.4. Let A be an i-v fuzzy BF-subalgebra of X, and let $n \in \mathbb{N}$. Then

(i) $\overline{\mu}_A(\prod_{i=1}^{n} x \ast x) \geq \overline{\mu}_A(x)$, for any odd number n,

(ii) $\overline{\mu}_A(\prod_{i=1}^{n} x \ast x) \geq \overline{\mu}_A(0)$, for any even number n.

Proof. Let $x \in X$ and assume that n is odd. Then $n = 2k - 1$ for some positive integer k. We prove by induction, definition and above lemma imply that $\overline{\mu}_A(x \ast x) = \overline{\mu}_A(0) \geq \overline{\mu}_A(x)$. Now suppose that $\overline{\mu}_A(\prod_{i=1}^{2k-1} x \ast x) \geq \overline{\mu}_A(x)$.

Then by assumption

\[
\begin{align*}
\overline{\mu}_A(\prod_{i=1}^{2k+1} x \ast x) &= \overline{\mu}_A(\prod_{i=1}^{2k+1} x \ast x) \\
&= \overline{\mu}_A(\prod_{i=1}^{2k-1} x \ast (x \ast (x \ast x))) \\
&= \overline{\mu}_A(\prod_{i=1}^{2k-1} x \ast x) \\
&\geq \overline{\mu}_A(x).
\end{align*}
\]

Which proves (i). Similarly we can prove (ii).

Theorem 3.5. Let A be an i-v fuzzy BF-subalgebra of X. If there exists a sequence $\{x_n\}$ in X, such that

$$
\lim_{n \to \infty} \overline{\mu}_A(x_n) = [1, 1]
$$

Then $\overline{\mu}_A(0) = [1, 1]$.

Proof. By above lemma we have $\overline{\mu}_A(0) \geq \overline{\mu}_A(x)$, for all $x \in X$, thus $\overline{\mu}_A(0) \geq \overline{\mu}_A(x_n)$, for every positive integer n. Consider

$$[1, 1] \geq \overline{\mu}_A(0) \geq \lim_{n \to \infty} \overline{\mu}_A(x_n) = [1, 1].$$

Hence $\overline{\mu}_A(0) = [1, 1]$.

Theorem 3.6. An i-v fuzzy set $A = [\mu^L_A, \mu^U_A]$ in X is an i-v fuzzy BF-subalgebra of X if and only if μ^L_A and μ^U_A are fuzzy BF-subalgebra of X.

Proof. Let μ^L_A and μ^U_A are fuzzy BF-subalgebra of X and $x, y \in X$, consider

$$\overline{\mu}_A(x \ast y) = [\overline{\mu}_A(x \ast y), \overline{\mu}_A(x \ast y)]$$

$$\geq \min\{\mu^L_A(x), \mu^L_A(y)\}, \min\{\mu^U_A(x), \mu^U_A(y)\}$$

$$= r\min\{[\mu^L_A(x), \mu^U_A(x)], [\mu^L_A(y), \mu^U_A(y)]\}$$

$$= r\min\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$$

This completes the proof.

Conversely, suppose that A is an i-v fuzzy BF-subalgebras of X. For any $x, y \in X$ we have

$$[\mu^L_A(x \ast y), \mu^U_A(x \ast y)] = \overline{\mu}_A(x \ast y)$$

$$\geq r\min\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}$$

$$= r\min\{[\mu^L_A(x), \mu^U_A(x)], [\mu^L_A(y), \mu^U_A(y)]\}$$

$$= \min\{\mu^L_A(x), \mu^L_A(y)\}, \min\{\mu^U_A(x), \mu^U_A(y)\}.$$
Let \(\{ A_i \mid i \in A \} \) be a family of i-v fuzzy \(BF \)-subalgebras of \(X \). Then \(\bigcap_{i \in A} A_i \) is also an i-v fuzzy \(BF \)-subalgebra of \(X \).

Definition 3.9. Let \(A \) be an i-v fuzzy set in \(X \) and \([\delta_1, \delta_2] \in D[0, 1] \). Then the i-v level \(BF \)-subalgebra \(U(A; [\delta_1, \delta_2]) \) of \(A \) and strong i-v \(BF \)-subalgebra \(U(A; >, [\delta_1, \delta_2]) \) of \(X \) are defined as following:

\[
U(A; [\delta_1, \delta_2]) := \{ x \in X \mid \mu_A(x) \geq [\delta_1, \delta_2] \},
\]

\[
U(A; >, [\delta_1, \delta_2]) := \{ x \in X \mid \mu_A(x) > [\delta_1, \delta_2] \}.
\]

Theorem 3.10. Let \(A \) be an i-v fuzzy \(BF \)-subalgebra of \(X \) and \(BF \) be closure of image of \(\mu_A \). Then the following condition are equivalent:

(i) \(A \) is an i-v fuzzy \(BF \)-subalgebra of \(X \).

(ii) For all \([\delta_1, \delta_2] \in Im(\mu_A)\), the nonempty level subset \(U(A; [\delta_1, \delta_2]) \) of \(A \) is a \(BF \)-subalgebra of \(X \).

(iii) For all \([\delta_1, \delta_2] \in Im(\mu_A) \setminus B \), the nonempty strong level subset \(U(A; >, [\delta_1, \delta_2]) \) of \(A \) is a \(BF \)-subalgebra of \(X \).

(iv) For all \([\delta_1, \delta_2] \in D[0, 1] \), the nonempty strong level subset \(U(A; >, [\delta_1, \delta_2]) \) of \(A \) is a \(BF \)-subalgebra of \(X \).

(v) For all \([\delta_1, \delta_2] \in D[0, 1] \), the nonempty level subset \(U(A; [\delta_1, \delta_2]) \) of \(A \) is a \(BF \)-subalgebra of \(X \).

Proof. (i \(\rightarrow \) iv) Let \(A \) be an i-v fuzzy \(BF \)-subalgebra of \(X \), \([\delta_1, \delta_2] \in D[0, 1] \) and \(x, y \in U(A; <, [\delta_1, \delta_2]) \), then we have

\[
\overline{\mu}_A(x \ast y) \geq \text{rmin}\{\overline{\mu}_A(x), \overline{\mu}_A(y)\} > \text{rmin}\{[\delta_1, \delta_2], [\delta_1, \delta_2]\} = [\delta_1, \delta_2]
\]

thus \(x \ast y \in U(A; >, [\delta_1, \delta_2]) \). Hence \(U(A; >, [\delta_1, \delta_2]) \) is a \(BF \)-subalgebra of \(X \).

(iv \(\rightarrow \) iii) It is clear.

(iii \(\rightarrow \) ii) Let \([\delta_1, \delta_2] \in Im(\mu_A)\). Then \(U(A; [\delta_1, \delta_2]) \) is a nonempty. Since

\[
U(A; [\delta_1, \delta_2]) = \bigcap_{[\delta_1, \delta_2] > [\alpha_1, \alpha_2]} U(A; >, [\delta_1, \delta_2]),
\]

where \([\alpha_1, \alpha_2] \in Im(\mu_A) \setminus B \). Then by (iii) and Corollary 3.7, \(U(A; [\delta_1, \delta_2]) \) is a \(BF \)-subalgebra of \(X \).
(ii → v) Let \([\delta_1, \delta_2] \in D[0, 1]\) and \(U(A; [\delta_1, \delta_2])\) be nonempty. Suppose \(x, y \in U(A; [\delta_1, \delta_2])\). Let \([\beta_1, \beta_2] = \min\{\mu_A(x), \mu_A(y)\}\), it is clear that \([\beta_1, \beta_2] = \min\{\mu_A(x), \mu_A(y)\} \geq ([\delta_1, \delta_2], [\delta_1, \delta_2]) = [\delta_1, \delta_2]\). Thus \(x, y \in U(A; [\beta_1, \beta_2])\) and \([\beta_1, \beta_2] \in \text{Im}(\mu_A)\), by (ii) \(U(A; [\beta_1, \beta_2])\) is a BF-subalgebra of \(X\), hence \(x * y \in U(A; [\beta_1, \beta_2])\). Then we have

\[
\overline{\mu}_A(x * y) \geq rmin\{\mu_A(x), \mu_A(y)\} \geq ([\beta_1, \beta_2], [\beta_1, \beta_2]) = [\beta_1, \beta_2] \geq [\delta_1, \delta_2].
\]

Therefore \(x * y \in U(A; [\delta_1, \delta_2])\). Then \(U(A; [\delta_1, \delta_2])\) is a BF-subalgebra of \(X\).

(v → i) Assume that the nonempty set \(U(A; [\delta_1, \delta_2])\) is a BF-subalgebra of \(X\), for every \([\delta_1, \delta_2] \in D[0, 1]\). In contrary, let \(x_0, y_0 \in X\) be such that

\[
\overline{\mu}_A(x_0 * y_0) < rmin\{\overline{\mu}_A(x_0), \overline{\mu}_A(y_0)\}.
\]

Let \(\overline{\mu}_A(x_0) = [\gamma_1, \gamma_2]\), \(\overline{\mu}_A(y_0) = [\gamma_3, \gamma_4]\) and \(\overline{\mu}_A(x_0 * y_0) = [\delta_1, \delta_2]\). Then

\[
[\delta_1, \delta_2] < rmin\{[\gamma_1, \gamma_2], [\gamma_3, \gamma_4]\} = [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}].
\]

So \(\delta_1 < \min\{\gamma_1, \gamma_3\}\) and \(\delta_2 < \min\{\gamma_2, \gamma_4\}\).

Consider

\[
[\lambda_1, \lambda_2] = \frac{1}{2}\overline{\mu}_A(x_0 * y_0) + rmin\{\overline{\mu}_A(x_0), \overline{\mu}_A(y_0)\}
\]

We get that

\[
[\lambda_1, \lambda_2] = \frac{1}{2}([\delta_1, \delta_2] + \min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\})
\]

\[
= \left[\frac{1}{2}(\delta_1 + \min\{\gamma_1, \gamma_3\}), \frac{1}{2}(\delta_2 + \min\{\gamma_2, \gamma_4\})\right]
\]

Therefore

\[
\min\{\gamma_1, \gamma_3\} > \lambda_1 = \frac{1}{2}(\delta_1 + \min\{\gamma_1, \gamma_3\}) > \delta_1
\]

\[
\min\{\gamma_2, \gamma_4\} > \lambda_2 = \frac{1}{2}(\delta_2 + \min\{\gamma_2, \gamma_4\}) > \delta_2
\]

Hence

\[
[\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2] > [\delta_1, \delta_2] = \overline{\mu}_A(x_0 * y_0)
\]

so that \(x_0 * y_0 \not\in U(A; [\delta_1, \delta_2])\)

which is a contradiction, since

\[
\overline{\mu}_A(x_0) = [\gamma_1, \gamma_2] \geq [\min\{\gamma_1, \gamma_3\}, \min\{\gamma_2, \gamma_4\}] > [\lambda_1, \lambda_2]
\]
Theorem 3.11. Each BF-subalgebra of X is an i-v level BF-subalgebra of an i-v fuzzy BF-subalgebra of X.

Proof. Let Y be a BF-subalgebra of X, and A be an i-v fuzzy set on X defined by

$$\overline{\mu}_A(x) = \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in Y \\ [0, 0] & \text{Otherwise} \end{cases}$$

where $\alpha_1, \alpha_2 \in [0, 1]$ with $\alpha_1 < \alpha_2$. It is clear that $U(A; [\alpha_1, \alpha_2]) = Y$. Let $x, y \in X$. We consider the following cases:

case 1) If $x, y \in Y$, then $x \ast y \in Y$ therefore

$$\overline{\mu}_A(x \ast y) = [\alpha_1, \alpha_2] = rmin\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$$

case 2) If $x, y \not\in Y$, then $\overline{\mu}_A(x) = [0, 0] = \overline{\mu}_A(y)$ and so

$$\overline{\mu}_A(x \ast y) \geq [0, 0] = rmin\{[0, 0], [0, 0]\} = rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$$

case 3) If $x \in Y$ and $y \not\in Y$, then $\overline{\mu}_A(x) = [\alpha_1, \alpha_2]$ and $\overline{\mu}_A(y) = [0, 0]$. Thus

$$\overline{\mu}_A(x \ast y) \geq [0, 0] = rmin\{[\alpha_1, \alpha_2], [0, 0]\} = rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$$

case 4) If $y \in Y$ and $x \not\in Y$, then by the same argument as in case 3, we can conclude that $\overline{\mu}_A(x \ast y) \geq rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\}.$

Therefore A is an i-v fuzzy BF-subalgebra of X.

Theorem 3.12. Let Y be a subset of X and A be an i-v fuzzy set on X which is given in the proof of Theorem 3.11. If A is an i-v fuzzy BF-subalgebra of X, then Y is a BF-subalgebra of X.

Proof. Let A be an i-v fuzzy BF-subalgebra of X, and $x, y \in Y$. Then $\overline{\mu}_A(x) = [\alpha_1, \alpha_2] = \overline{\mu}_A(y)$, thus

$$\overline{\mu}_A(x \ast y) \geq rmin\{\overline{\mu}_A(x), \overline{\mu}_A(y)\} = rmin\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = [\alpha_1, \alpha_2].$$

which implies that $x \ast y \in Y$.

Theorem 3.13. If A is an i-v fuzzy BF-subalgebra of X, then the set

$$X_{\overline{p}_A} := \{ x \in X \mid \overline{p}_A(x) = \overline{p}_A(0) \}$$

is a BF-subalgebra of X.

Proof. Let $x, y \in X_{\overline{p}_A}$. Then $\overline{p}_A(x) = \overline{p}_A(0) = \overline{p}_A(y)$, and so

$$\overline{p}_A(x \ast y) \geq \text{rmin}\{\overline{p}_A(x), \overline{p}_A(y)\} = \text{rmin}\{\overline{p}_A(0), \overline{p}_A(0)\} = \overline{p}_A(0).$$

by Lemma 3.3, we get that $\overline{p}_A(x \ast y) = \overline{p}_A(0)$ which means that $x \ast y \in X_{\overline{p}_A}$.

Theorem 3.14. Let N be an i-v fuzzy sub set of X. Let N be an i-v fuzzy set defined by \overline{p}_A as:

$$\overline{p}_N(x) = \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in N \\ [\beta_1, \beta_2] & \text{Otherwise} \end{cases}$$

for all $[\alpha_1, \alpha_2], [\beta_1, \beta_2] \in D[0, 1]$ with $[\alpha_1, \alpha_2] \geq [\beta_1, \beta_2]$. Then N is an i-v fuzzy BF-subalgebra if and only if N is a BF-subalgebra of X. Moreover, in this case $X_{\overline{p}_N} = N$.

Proof. Let N be an i-v fuzzy BF-subalgebra. Let $x, y \in X$ be such that $x, y \in N$. Then

$$\overline{p}_N(x \ast y) \geq \text{rmin}\{\overline{p}_N(x), \overline{p}_N(y)\} = \text{rmin}\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = [\alpha_1, \alpha_2]$$

and so $x \ast y \in N$.

Conversely, suppose that N is a BF-subalgebra of X, let $x, y \in X$.

(i) If $x, y \in N$ then $x \ast y \in N$, thus

$$\overline{p}_N(x \ast y) = [\alpha_1, \alpha_2] = \text{rmin}\{\overline{p}_N(x), \overline{p}_N(y)\}$$

(ii) If $x \not\in N$ or $y \not\in N$, then

$$\overline{p}_N(x \ast y) \geq [\beta_1, \beta_2] = \text{rmin}\{\overline{p}_N(x), \overline{p}_N(y)\}$$

This show that N is an i-v fuzzy BF-subalgebra.

Moreover, we have

$$X_{\overline{p}_N} := \{ x \in X \mid \overline{p}_N(x) = \overline{p}_N(0) \} = \{ x \in X \mid \overline{p}_N(x) = [\alpha_1, \alpha_2] \} = N.$$

Definition 3.15. [1] Let f be a mapping from the set X into a set Y. Let BF be an i-v fuzzy set in Y. Then the inverse image of BF, denoted by $f^{-1}[B]$,
is the i-v fuzzy set in X with the membership function given by $\overline{\mu}_{f^{-1}[B]}(x) = \overline{\mu}_B(f(x))$, for all $x \in X$.

Lemma 3.16. [1] Let f be a mapping from the set X into a set Y. Let $m = [m^L, m^U]$ and $n = [n^L, n^U]$ be i-v fuzzy sets in X and Y respectively. Then

1. $f^{-1}(n) = [f^{-1}(n^L), f^{-1}(n^U)]$,
2. $f(m) = [f(m^L), f(m^U)]$.

Proposition 3.17. Let f be a BF-homomorphism from X into Y and G be an i-v fuzzy BF-subalgebra of Y with the membership function μ_G. Then the inverse image $f^{-1}[G]$ of G is an i-v fuzzy BF-subalgebra of X.

Proof. Since $B = [\mu_B^L, \mu_B^U]$ is an i-v fuzzy BF-subalgebra of Y, by Theorem 3.6, we get that μ_B^L and μ_B^U are fuzzy BF-subalgebra of Y. By Proposition 2.4, $f^{-1}[\mu_B^L]$ and $f^{-1}[\mu_B^U]$ are fuzzy BF-subalgebra of X, by above lemma and Theorem 3.6, we can conclude that $f^{-1}(B) = [f^{-1}(\mu_B^L), f^{-1}(\mu_B^U)]$ is an i-v fuzzy BF-subalgebra of X.

Definition 3.18. [1] Let f be a mapping from the set X into a set Y, and A be an i-v fuzzy set in X with membership function μ_A. Then the image of A, denoted by $f[A]$, is the i-v fuzzy set in Y with membership function defined by:

$$\overline{\mu}_{f[A]}(y) = \begin{cases} \rho_{\sup_{z \in f^{-1}(y)} \overline{\mu}_A(z)} & \text{if } f^{-1}(y) \neq \emptyset, \forall y \in Y, \\ [0,0] & \text{otherwise} \end{cases}$$

Where $f^{-1}(y) = \{x \mid f(x) = y\}$.

Theorem 3.19. Let f be a BF-homomorphism from X onto Y. If A is an i-v fuzzy BF-subalgebra of X, then the image $f[A]$ of A is an i-v fuzzy BF-subalgebra of Y.

Proof. Assume that A is an i-v fuzzy BF-subalgebra of X, then $A = [\mu_A^L, \mu_A^U]$ is an i-v fuzzy BF-subalgebra of X if and only if μ_A^L and μ_A^U are fuzzy BF-subalgebra of X. By Proposition 2.5, $f[\mu_A^L]$ and $f[\mu_A^U]$ are fuzzy BF-subalgebra of Y, by Lemma 3.16, and Theorem 3.6, we can conclude that $f[A] = [f[\mu_A^L], f[\mu_A^U]]$ is an i-v fuzzy BF-subalgebra of Y.

References

Received: October, 2008