Composition of Entire Functions
and their Maximum Terms

Sanjib Kumar Datta
Department of Mathematics, University of North Bengal
Darjeeling, Pin-734013, West Bengal, India
sanjib.kr.datta@yahoo.co.in

Somnath Mandal
Department of Mathematics, Siliguri Institute of Technology
Sukna, Darjeeling, Pin-734009, West Bengal, India
somnathm11@yahoo.co.in

Abstract

In the paper we compare the maximum term of composition of two entire functions with their corresponding left and right factors on the basis of a slowly changing function.

Mathematics Subject Classification: 30D30, 30D35

Keywords: Entire function, maximum term, composition, growth, slowly changing function

1 Introduction, Definitions and Notations.

Let f be an entire function defined in the open complex plane \mathbb{C}. The maximum term $\mu(r,f)$ of $f = \sum_{n=0}^{\infty} a_n z^n$ on $|z| = r$ is defined by $\mu(r,f) = \max_{n \geq 0} (|a_n| r^n)$. To start our paper we just recall the following definitions.

Definition 1. The order ρ_f and lower order λ_f of an entire function f is defined as follows:

$$\rho_f = \limsup_{r \to \infty} \frac{\log^{[2]} M(r,f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log^{[2]} M(r,f)}{\log r}$$
where
\[\log^k x = \log \left(\log^{k-1} x \right) \quad \text{for } k = 1, 2, 3, \ldots \text{ and} \]
\[\log^0 x = x. \]

Definition 2. The hyper order \(\bar{\rho}_f \) and hyper lower order \(\bar{\lambda}_f \) of \(f \) is defined by
\[\bar{\rho}_f = \limsup_{r \to \infty} \frac{\log^3 M(r, f)}{\log r} \quad \text{and} \quad \bar{\lambda}_f = \liminf_{r \to \infty} \frac{\log^3 M(r, f)}{\log r}. \]

Since for \(0 \leq r < R \),
\[\mu(r, f) \leq M(r, f) \leq \frac{R}{R-r} \mu(R, f) \]
it is easy to see that
\[\rho_f = \limsup_{r \to \infty} \frac{\log^2 \mu(r, f)}{\log r}, \quad \lambda_f = \liminf_{r \to \infty} \frac{\log^2 \mu(r, f)}{\log r} \]
and
\[\bar{\rho}_f = \limsup_{r \to \infty} \frac{\log^3 \mu(r, f)}{\log r}, \quad \bar{\lambda}_f = \liminf_{r \to \infty} \frac{\log^3 \mu(r, f)}{\log r}. \]

Singh [3] proved some theorems on the comparative growth properties of \(\log^3 \mu(r, f \circ g) \) with respect to \(\log^2 \mu(r^A, f) \) and \(\log^2 \mu(r^A, g) \) for every positive constant \(A \).

Somasundaram and Thamizharasi [2] introduced the notions of \(L \)-order, \(L \)-lower order and \(L \)-type for entire functions where \(L = L(r) \) is a positive continuous function increasing slowly i.e., \(L(ar) \sim L(r) \) as \(r \to \infty \) for every constant \(a \). Their definitions are as follows:

Definition 3. [2] The \(L \)-order \(\rho^L_f \) and \(L \)-lower order \(\lambda^L_f \) of an entire function \(f \) are defined as follows:
\[\rho^L_f = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log [rL(r)]} \quad \text{and} \quad \lambda^L_f = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log [rL(r)]}. \]

When \(f \) is meromorphic, then
\[\rho^L_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [rL(r)]} \quad \text{and} \quad \lambda^L_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log [rL(r)]}. \]
Definition 4. [2] The L-type σ_f^L of an entire function f with L-order ρ_f^L is defined as

$$\sigma_f^L = \limsup_{r \to \infty} \frac{\log M(r, f)}{[rL(r)]^{\rho_f^L}}, 0 < \rho_f^L < \infty.$$

For meromorphic f, the L-type σ_f^L becomes

$$\sigma_f^L = \limsup_{r \to \infty} \frac{T(r, f)}{[rL(r)]^{\rho_f^L}}, 0 < \rho_f^L < \infty.$$

With the help of the notion of maximum terms of entire functions, Definition 3 and Definition 4 can be alternatively stated as follows:

Definition 5. The L-order ρ_f^L and L-lower order λ_f^L of an entire function f are defined as follows:

$$\rho_f^L = \limsup_{r \to \infty} \frac{\log^2 \mu(r, f)}{\log [rL(r)]} \quad \text{and} \quad \lambda_f^L = \liminf_{r \to \infty} \frac{\log^2 \mu(r, f)}{\log [rL(r)]}.$$

When f is meromorphic then ρ_f^L and λ_f^L cannot be defined in the above way.

Definition 6. The L-type σ_f^L of an entire function f with L-order ρ_f^L is defined as

$$\sigma_f^L = \limsup_{r \to \infty} \frac{\log \mu(r, f)}{[rL(r)]^{\rho_f^L}}, 0 < \rho_f^L < \infty.$$

For meromorphic f, the L-type σ_f^L cannot be defined in the above way.

The more generalised concept of L-order and L-type of entire and meromorphic functions are L^*-order and L^*-type. Their definitions are as follows:

Definition 7. The L^*-order, L^*-lower order and L^*-type of a meromorphic function are defined by

$$\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log [reL(r)]}, \quad \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log [reL(r)]}$$

and

$$\sigma_f^{L^*} = \limsup_{r \to \infty} \frac{T(r, f)}{[reL(r)]^{\rho_f^{L^*}}}, 0 < \rho_f^{L^*} < \infty.$$

When f is entire, one can easily verify that

$$\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log^2 M(r, f)}{\log [reL(r)]^2}, \quad \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log^2 M(r, f)}{\log [reL(r)]^2}.$$
and

\[\sigma_f^* = \limsup_{r \to \infty} \frac{\log M(r, f)}{[re^{L(r)}]^{\rho_f^*}}, 0 < \rho_f^* < \infty. \]

In view of the notion of maximum term of entire functions one can restate Definition 7 in the following way.

Definition 8. The \(L^* \)-order, \(L^* \)-lower order and \(L^* \)-type of an entire function \(f \) are defined as

\[\rho_f^{L^*} = \limsup_{r \to \infty} \frac{\log \mu(r, f)}{\log [re^{L(r)}]}, \lambda_f^{L^*} = \liminf_{r \to \infty} \frac{\log \mu(r, f)}{\log [re^{L(r)}]} \]

and

\[\sigma_f^{L^*} = \limsup_{r \to \infty} \frac{\log \mu(r, f)}{[re^{L(r)}]^{\rho_f^*}}, 0 < \rho_f^* < \infty. \]

Definition 8 fails if \(f \) is meromorphic.

Singh [3] proved some theorems on the comparative growth properties of \(\log^{[2]} \mu(r, f \circ g) \) with respect to \(\log^{[2]} \mu(r^A, f) \) for every positive constant \(A \). In the paper we further investigate the comparative growths of maximum term of two entire functions with their corresponding left and right factors on the basis of \(L \)-order and \(L \)-lower order. We do not explain the standard notations and definitions on the theory of entire and meromorphic functions because those are available in [4] and [1].

2 Theorems.

In this section we present the main results of the paper.

Theorem 1. Let \(f \) and \(g \) be two entire functions such that \(0 < \lambda_f^{L^*} \leq \rho_f^L < \infty \) and \(0 < \rho_g^L < \infty \). Then for any integer \(A \),

\[(i) \liminf_{r \to \infty} \frac{\log^{[2]} \mu(r, f \circ g)}{\log^{[2]} \mu(r^A, g)} \leq \frac{\rho_{f \circ g}^{L^*}}{A \rho_g^L} \leq \limsup_{r \to \infty} \frac{\log^{[2]} \mu(r, f \circ g)}{\log^{[2]} \mu(r^A, g)}. \]

Further if \(\lambda_g^L > 0 \) then

\[(ii) \frac{\lambda_{f \circ g}^L}{A \rho_g^L} \leq \liminf_{r \to \infty} \frac{\log^{[2]} \mu(r, f \circ g)}{\log^{[2]} \mu(r^A, g)} \leq \frac{\lambda_{f \circ g}^L}{A \lambda_g^L} \leq \limsup_{r \to \infty} \frac{\log^{[2]} \mu(r, f \circ g)}{\log^{[2]} \mu(r^A, g)} \leq \frac{\rho_{f \circ g}^{L^*}}{A \lambda_g^L}. \]
and

\[
(iii) \liminf_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \min \left\{ \frac{\lambda_{f \circ g}^L}{A \lambda_g^L}, \frac{\rho_{f \circ g}^L}{A \rho_g^L} \right\} \leq \max \left\{ \frac{\lambda_{f \circ g}^L}{A \lambda_g^L}, \frac{\rho_{f \circ g}^L}{A \rho_g^L} \right\} \leq \limsup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)}.
\]

Proof. (i) From the definition of L-order we have for arbitrary positive ε and for all large values of r,

\[
\log^2 \mu (r, f \circ g) \leq \left(\rho_{f \circ g}^L + \varepsilon \right) \log \left[r L (r) \right]
\]

and for a sequence of values of r tending to infinity,

\[
\log^2 \mu (r^A, g) \geq A \left(\rho_g^L - \varepsilon \right) \log \left[r L (r) \right].
\]

Now from (1) and (2) it follows for a sequence of values of r tending to infinity,

\[
\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho_{f \circ g}^L + \varepsilon}{A \left(\rho_g^L - \varepsilon \right)}.
\]

As $\varepsilon (> 0)$ is arbitrary we obtain that

\[
\liminf_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho_{f \circ g}^L}{A \rho_g^L}.
\]

(3)

Again for a sequence of values of r tending to infinity,

\[
\log^2 \mu (r, f \circ g) \geq \left(\rho_{f \circ g}^L - \varepsilon \right) \log \left[r L (r) \right].
\]

(4)

Also for all sufficiently large values of r,

\[
\log^2 \mu (r^A, g) \leq A \left(\rho_g^L + \varepsilon \right) \log \left[r L (r) \right].
\]

(5)

So combining (4) and (5) we get for a sequence of values of r tending to infinity,

\[
\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \geq \frac{\rho_{f \circ g}^L - \varepsilon}{A \left(\rho_g^L + \varepsilon \right)}.
\]

Since $\varepsilon (> 0)$ is arbitrary it follows that

\[
\limsup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \geq \frac{\rho_{f \circ g}^L}{A \rho_g^L}.
\]

(6)

Thus the first part of Theorem 1 follows from (3) and (6).
(ii) From the definition of L-lower order we have for arbitrary positive ε and for all large values of r,

$$\log^{[2]} \mu (r, f \circ g) \geq (\lambda^L_{f \circ g} - \varepsilon) \log \left[r L (r) \right].$$

(7)

Now from (5) and (7) it follows for all large values of r,

$$\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\lambda^L_{f \circ g} - \varepsilon}{A (\rho^L_{g} + \varepsilon)}.$$

As $\varepsilon (> 0)$ is arbitrary we obtain that

$$\liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\lambda^L_{f \circ g}}{A \rho^L_{g}}. \tag{8}$$

Again for a sequence of values of r tending to infinity,

$$\log^{[2]} \mu (r, f \circ g) \leq (\lambda^L_{f \circ g} + \varepsilon) \log \left[r L (r) \right]$$

(9)

and for all large values of r,

$$\log^{[2]} \mu (r^A, g) \geq A (\lambda^L_{g} - \varepsilon) \log \left[r L (r) \right]. \tag{10}$$

So combining (9) and (10) we get for a sequence of values of r tending to infinity,

$$\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\lambda^L_{f \circ g} + \varepsilon}{A (\lambda^L_{g} - \varepsilon)}.$$

Since $\varepsilon (> 0)$ is arbitrary it follows that

$$\liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\lambda^L_{f \circ g}}{A \lambda^L_{g}}. \tag{11}$$

Also for a sequence of values of r tending to infinity,

$$\log^{[2]} \mu (r^A, g) \leq A (\lambda^L_{g} + \varepsilon) \log \left[r L (r) \right]. \tag{12}$$

Now from (7) and (12) we obtain for a sequence of values of r tending to infinity,

$$\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\lambda^L_{f \circ g} - \varepsilon}{A (\lambda^L_{g} + \varepsilon)}.$$

As $\varepsilon (> 0)$ is arbitrary we get that

$$\limsup_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\lambda^L_{f \circ g}}{A \lambda^L_{g}}.$$
Again from (1) and (10) it follows for all large values of \(r \),
\[
\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho_{fog}^L}{A (\lambda_g^L - \varepsilon)}.
\]

As \(\varepsilon (> 0) \) is arbitrary we obtain that
\[
\limsup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho_{fog}^L}{A \lambda_g^L}.
\]

Thus the second part of Theorem 1 follows from (8), (11), (13) and (14).

(iii) Combining (i) and (ii) of Theorem 1, (iii) follows.

In the line of Theorem 1 we may prove the following theorem.

Theorem 2. Let \(f \) and \(g \) be two entire functions such that \(0 < \bar{\lambda}_{fog}^L \leq \bar{\rho}_{fog}^L < \infty \) and \(0 < \bar{\rho}_g^L < \infty \). Then for any positive number \(A \),
\[
(i) \liminf_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)} \leq \frac{\bar{\rho}_{fog}^L}{A \bar{\rho}_g^L} \leq \limsup_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)} \leq \frac{\bar{\lambda}_{fog}^L}{A \bar{\lambda}_g^L}
\]

Further if \(\bar{\lambda}_g^L > 0 \) then
\[
(ii) \frac{\bar{\lambda}_{fog}^L}{A \bar{\rho}_g^L} \leq \liminf_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)} \leq \frac{\bar{\lambda}_{fog}^L}{A \bar{\lambda}_g^L} \leq \limsup_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)} \leq \frac{\bar{\rho}_{fog}^L}{A \bar{\rho}_g^L}
\]

and
\[
(iii) \liminf_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)} \leq \min \left\{ \frac{\bar{\lambda}_{fog}^L}{A \bar{\lambda}_g^L}, \frac{\bar{\rho}_{fog}^L}{A \bar{\rho}_g^L} \right\} \leq \max \left\{ \frac{\bar{\lambda}_{fog}^L}{A \bar{\lambda}_g^L}, \frac{\bar{\rho}_{fog}^L}{A \bar{\rho}_g^L} \right\} \leq \limsup_{r \to \infty} \frac{\log^3 \mu (r, f \circ g)}{\log^3 \mu (r^A, g)}.
\]

Theorem 3. If \(f \) and \(g \) be two entire functions with \(\rho_g^L < \infty \) and \(\rho_{fog}^L = \infty \), then for every positive number \(A \),
\[
\limsup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} = \infty.
\]

Proof. Let us assume that the conclusion of Theorem 3 does not hold. Then there exists a constant \(B > 0 \) such that for all sufficiently large values of \(r \),
\[
\log^2 \mu (r, f \circ g) \leq B \log^2 \mu (r^A, g).
\]
Again from the definition of \(\rho_g \) it follows that
\[
\log^{[2]} \mu (r^A, g) \leq (\rho_g + \varepsilon) A \log [r L (r)] .
\] (16)
holds for all large values of \(r \).
So from (15) and (16) we obtain for all sufficiently large values of \(r \),
\[
\log^{[2]} \mu (r, f \circ g) \leq (\rho_g + \varepsilon) AB \log [r L (r)] .
\] (17)
From (17) it follows that \(\rho_{f \circ g}^L < \infty \).
So we arrive at a contradiction.
This proves the theorem.

Remark 1. If we take \(\rho_f^L < \infty \) instead of \(\rho_g^L < \infty \) in Theorem 3 and the other conditions remain the same then the theorem remains valid with \(g \) replaced by \(f \) in the denominator.

In the following theorems we establish the comparative growths of maximum term of two entire functions with their corresponding left and right factors on the basis of \(L^*\)-order and \(L^*\)-lower order.

Theorem 4. Let \(f \) and \(g \) be two entire functions such that \(0 < \lambda_g^{L^*} \leq \rho_g^{L^*} < \infty \) and \(0 < \rho_g^{L^*} < \infty \). Then for any positive integer \(A \)
\[
(i) \liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\rho_{f \circ g}^{L^*}}{A \rho_g^{L^*}} \leq \limsup_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} .
\]
Further if \(\lambda_g^{L^*} > 0 \) then
\[
(ii) \frac{\lambda_{f \circ g}^{L^*}}{A \rho_g^{L^*}} \leq \liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\lambda_{f \circ g}^{L^*}}{A \rho_g^{L^*}} \leq \limsup_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\rho_{f \circ g}^{L^*}}{A \lambda_g^{L^*}}
\]
and
\[
(iii) \liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \min \left\{ \frac{\lambda_{f \circ g}^{L^*}}{A \lambda_g^{L^*}}, \frac{\rho_{f \circ g}^{L^*}}{A \rho_g^{L^*}} \right\} \leq \max \left\{ \frac{\lambda_{f \circ g}^{L^*}}{A \lambda_g^{L^*}}, \frac{\rho_{f \circ g}^{L^*}}{A \rho_g^{L^*}} \right\} \leq \limsup_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} .
\]

Proof. (i) From the definition of \(L^*\)-order we have for arbitrary positive \(\varepsilon \) and for all large values of \(r \),
\[
\log^{[2]} \mu (r, f \circ g) \leq (\rho_{f \circ g}^{L^*} + \varepsilon) \log [r e^{L(r)}] \] (18)
and for a sequence of values of r tending to infinity,
\[
\log^{[2]} \mu (r^A, g) \geq A \left(\rho^L_g - \varepsilon \right) \log \left[r e^{L(r)} \right]. \tag{19}
\]

Now from (18) and (19) it follows for a sequence of values of r tending to infinity,
\[
\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\rho^L_{f \circ g} + \varepsilon}{A \left(\rho^L_g - \varepsilon \right)}.
\]

As $\varepsilon (> 0)$ is arbitrary we obtain that
\[
\liminf_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \leq \frac{\rho^L_{f \circ g}}{A \rho^L_g}.
\tag{20}
\]

Again for a sequence of values of r tending to infinity,
\[
\log^{[2]} \mu (r^A, g) \leq \rho^L_{f \circ g} + \varepsilon. \tag{22}
\]

So combining (21) and (22) we get for a sequence of values of r tending to infinity,
\[
\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\rho^L_{f \circ g} - \varepsilon}{A \left(\rho^L_g + \varepsilon \right)}.
\]

Since $\varepsilon (> 0)$ is arbitrary it follows that
\[
\limsup_{r \to \infty} \frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\rho^L_{f \circ g}}{A \rho^L_g}.
\tag{23}
\]

Thus the first part of Theorem 4 follows from (20) and (23).

(ii) From the definition of L^*-lower order we have for arbitrary positive ε and for all large values of r,
\[
\log^{[2]} \mu (r, f \circ g) \geq \left(\lambda^L_{f \circ g} - \varepsilon \right) \log \left[r e^{L(r)} \right]. \tag{24}
\]

Now from (22) and (24) it follows for all large values of r,
\[
\frac{\log^{[2]} \mu (r, f \circ g)}{\log^{[2]} \mu (r^A, g)} \geq \frac{\lambda^L_{f \circ g} - \varepsilon}{A \left(\rho^L_g + \varepsilon \right)}.
\]
As $\varepsilon (> 0)$ is arbitrary we obtain that

$$\lim \inf_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \geq \frac{\lambda^*_f g}{A \rho^*_g}.$$ \hfill (25)

Again for a sequence of values of r tending to infinity,

$$\log^2 \mu (r, f \circ g) \leq (\lambda^*_f g + \varepsilon) \log [re^{L(r)}]$$ \hfill (26)

and for all large values of r,

$$\log^2 \mu (r^A, g) \geq A (\lambda^*_g - \varepsilon) \log [re^{L(r)}].$$ \hfill (27)

So combining (26) and (27) we get for a sequence of values of r tending to infinity,

$$\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\lambda^*_f g + \varepsilon}{A (\lambda^*_g - \varepsilon)}.$$ \hfill (28)

Since $\varepsilon (> 0)$ is arbitrary it follows that

$$\lim \inf_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\lambda^*_f g}{A \lambda^*_g}.$$ \hfill (29)

Also for a sequence of values of r tending to infinity,

$$\log^2 \mu (r^A, g) \leq A (\lambda^*_g + \varepsilon) \log [re^{L(r)}].$$ \hfill (29)

Now from (24) and (29) we obtain for a sequence of values of r tending to infinity,

$$\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \geq \frac{\lambda^*_f g - \varepsilon}{A (\lambda^*_g + \varepsilon)}.$$ \hfill (30)

As $\varepsilon (> 0)$ is arbitrary we get that

$$\lim \sup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \geq \frac{\lambda^*_f g}{A \lambda^*_g}.$$ \hfill (31)

Again from (18) and (27) it follows for all large values of r,

$$\frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho^*_f g + \varepsilon}{A (\lambda^*_g - \varepsilon)}.$$ \hfill (32)

As $\varepsilon (> 0)$ is arbitrary we obtain that

$$\lim \sup_{r \to \infty} \frac{\log^2 \mu (r, f \circ g)}{\log^2 \mu (r^A, g)} \leq \frac{\rho^*_f g}{A \lambda^*_g}.$$ \hfill (31)

Thus the second part of Theorem 4 follows from (25), (28), (30) and (31).

(iii) Combining (i) and (ii) of Theorem 4, (iii) follows.

In the line of Theorem 4 we may prove the following theorem.
Theorem 5. Let \(f \) and \(g \) be two entire functions such that \(0 < \lambda^*_{fog} \leq \bar{\rho}^*_f < \infty \) and \(0 < \bar{\rho}^*_g < \infty \). Then for any positive number \(A \),

\[
(i) \liminf_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)} \leq \frac{\bar{\rho}^*_f g}{A\lambda^*_g} \leq \limsup_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)}
\]

Further if \(\lambda^*_g > 0 \) then

\[
(ii) \frac{\lambda^*_{fog}}{A\bar{\rho}^*_g} \leq \liminf_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)} \leq \frac{\lambda^*_{fog}}{A\lambda^*_g} \leq \limsup_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)} \leq \frac{\bar{\rho}^*_f g}{A\lambda^*_g}
\]

and

\[
(iii) \liminf_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)} \leq \min \left\{ \frac{\lambda^*_{fog}}{A\lambda^*_g}, \frac{\bar{\rho}^*_f g}{A\lambda^*_g} \right\} \leq \max \left\{ \frac{\lambda^*_{fog}}{A\lambda^*_g}, \frac{\bar{\rho}^*_f g}{A\lambda^*_g} \right\} \leq \limsup_{r \to \infty} \frac{\log [3] \mu (r, f \circ g)}{\log [3] \mu (r^A, g)}.
\]

Theorem 6. If \(f \) and \(g \) be two entire functions with \(\rho^*_g < \infty \) and \(\rho^*_f = \infty \), then for every positive number \(A \),

\[
\limsup_{r \to \infty} \frac{\log [2] \mu (r, f \circ g)}{\log [2] \mu (r^A, g)} = \infty.
\]

Proof. Let us assume that the conclusion of Theorem 6 does not hold. Then there exists a constant \(B > 0 \) such that for all sufficiently large values of \(r \),

\[
\log [2] \mu (r, f \circ g) \leq B \log [2] \mu (r^A, g). \tag{32}
\]

Again from the definition of \(\rho^*_g \) it follows that

\[
\log [2] \mu (r^A, g) \leq (\rho^*_g + \varepsilon) A \log (re^{L(r)}) \tag{33}
\]

holds for all large values of \(r \).

So from (32) and (33) we obtain for all sufficiently large values of \(r \),

\[
\log [2] \mu (r, f \circ g) \leq (\rho^*_g + \varepsilon) AB \log (re^{L(r)}) \tag{34}
\]

From (34) it follows that \(\rho^*_f g < \infty \).

So we arrive at a contradiction.

This proves the theorem.

Remark 2. If we take \(\rho^*_f < \infty \) instead of \(\rho^*_g < \infty \) in Theorem 6 and the other conditions remain the same then the theorem remains valid with \(g \) replaced by \(f \) in the denominator.
References

Received: October, 2008