On Relative Defects of Differential Polynomials

Sanjib Kumar Datta

Department of Mathematics, University of North Bengal
P.O. North Bengal University, Raja Rammohunpur
Dist-Darjeeling, PIN-734013, West Bengal, India
sanjib.kr.datta@yahoo.co.in

Tanmay Biswas

Department of Mathematics, University of North Bengal
P.O. North Bengal University, Raja Rammohunpur
Dist-Darjeeling, PIN-734013, West Bengal, India
Tanmaybiswas_math@rediffmail.com

Abstract

The purpose of this paper is to compare the relative Valiron defect with the relative Nevanlinna defect of differential polynomials generated by a meromorphic function.

Mathematics Subject Classification: 30D35, 30D30

Keywords: Relative Nevanlinna defect, Relative Valiron defect, Meromorphic function, Differential polynomial

1 Introduction, Definitions and Notations.

Let \(f \) be a meromorphic function defined in the open complex plane \(\mathbb{C} \). For \(a \in \mathbb{C} \cup \{ \infty \} \) we denote by \(n(t, a; f) \) (\(\tilde{n}(t, a; f) \)) the number of \(a \)-points (distinct \(a \)-points) of \(f \) in \(|z| \leq t \), where an \(\infty \) -point is a pole of \(f \). We put

\[
N(r, a; f) = \int_{0}^{r} \frac{n(t, a; f) - n(0, a; f)}{t} dt + \tilde{n}(0, a; f) \log r.
\]
The function \(N(r, a; f) \) are called the counting function of \(a \)-points (distinct \(a \)-points) of \(f \). In many occasions \(N(r, \infty; f) \) and \(\tilde{N}(r, \infty; f) \) are denoted by \(N(r, f) \) and \(\tilde{N}(r, f) \) respectively. We also put

\[
m(r, f) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta,
\]

where

\[
\log^+ x = \log x, \text{ if } x \geq 1
\]

\[
= 0, \text{ if } 0 \leq x < 1.
\]

For \(a \in \mathbb{C} \) we denote by \(m \left(r, \frac{1}{f-a} \right) \) by \(m(r, a; f) \) and we mean by \(m(r, \infty; f) \) the function \(m(r, f) \), which is called the proximity function of \(f \).

The function \(T(r, f) = m(r, f) + N(r, f) \) is called the characteristic function of \(f \). If \(a \in \mathbb{C} \cup \{\infty\} \), the quantity

\[
\delta(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)} = \liminf_{r \to \infty} \frac{m(r, a; f)}{T(r, f)}
\]

is called the Nevanlinna deficiency of the value \('a'\). Similarly, the Valiron deficiency \(\Delta(a; f) \) of the value \('a'\) is defined as

\[
\Delta(a; f) = 1 - \liminf_{r \to \infty} \frac{N(r, a; f)}{T(r, f)} = \limsup_{r \to \infty} \frac{m(r, a; f)}{T(r, f)}.
\]

Milloux [5] introduced the concept of absolute defect of \('a'\) with respect to \(f' \). Later Xiong [9] extended this definition. He introduced the term

\[
\delta^{(k)}_R(a; f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f^{(k)})}{T(r, f)}
\]

for \(k = 1, 2, 3, \ldots \) and called it the relative Nevanlinna defect of \('a'\) with respect to \(f^{(k)} \). Xiong [9] has shown various relations between the usual defects and the relative defects for meromorphic functions. Singh [7] introduced the term relative defect for distinct zeros and poles and established various relations between it, relative defects and the usual defects.

Let \(f \) be a non-constant meromorphic function defined in the open complex plane \(\mathbb{C} \). Also let \(n_{0j}, n_{1j}, \ldots, n_{kj}(k \geq 1) \) be non-negative integers such that for each \(j \), \(\sum_{i=0}^{k} n_{ij} \geq 1 \). We call \(M_j[f] = A_{j_1} f^{n_{0j}} (f^{(1)})^{n_{1j}} \ldots (f^{(k)})^{n_{kj}} \)

where \(T(r, A_j) = S(r, f) \) to be a differential monomial generated by \(f \). The numbers \(\gamma_{M_j} = \sum_{i=0}^{k} n_{ij} \) and \(\Gamma_{M_j} = \sum_{i=0}^{k} (i+1) n_{ij} \) are called respectively the
On relative defects of differential polynomials

737

degree and weight of $M_j[f] \ {[2],[6]}$. The expression $P[f] = \sum_{j=1}^{s} M_j[f]$ is called a differential polynomial generated by f. The numbers $\gamma_P = \max_{1<j<s} \gamma_{M_j}$ and $\Gamma_P = \max_{1<j<s} \Gamma_{M_j}$ are called respectively the degree and weight of $P[f] \ {[2],[6]}$. Also we call the numbers $\gamma_P = \min_{1<j<s} \gamma_{M_j}$ and z (the order of the highest derivative of f) the lower degree and the order of $P[f]$ respectively. If $\gamma_P = \gamma_P$, $P[f]$ is called a homogeneous differential polynomial.

In this paper we call the terms

$$\delta_P^A(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;P[f])}{T(r,P[f])} = \liminf_{r \to \infty} \frac{m(r,a;P[f])}{T(r,P[f])},$$

the usual Nevanlinna defect or the absolute Nevanlinna defect of the value $'a'$ with respect to $P[f]$,

$$\Delta_P^A(a;f) = 1 - \liminf_{r \to \infty} \frac{N(r,a;P[f])}{T(r,P[f])} = \limsup_{r \to \infty} \frac{m(r,a;P[f])}{T(r,P[f])},$$

the usual Valiron defect or the absolute Valiron defect of the value $'a'$ with respect to $P[f]$,

$$\delta_P^R(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;P[f])}{T(r,f)},$$

the relative Nevanlinna defect of $'a'$ with respect to $P[f]$ and

$$\Delta_P^R(a;f) = 1 - \liminf_{r \to \infty} \frac{N(r,a;P[f])}{T(r,f)},$$

the relative Valiron defect of $'a'$ with respect to $P[f]$ and prove various relations among them.

The term $S(r,f)$ denotes any quantity satisfying $S(r,f) = o\{T(r,f)\}$ as $r \to \infty$ through all values of r if f is of finite order and except possibly for a set of r of finite linear measure otherwise. We do not explain the standard notations and definitions on the theory of entire and meromorphic functions because those are available in [8] and [3]. Throughout the paper we consider only the non-constant differential polynomials and we denote by $P_0[f]$ a differential polynomial not containing f i.e. for which $n_{0j} = 0$ for $j = 1, 2, \ldots, s$. We consider only those $P[f], P_0[f]$ singularities of whose individual terms do not cancel each other.

The following definitions are well known.

Definition 1. The quantity $\Theta(a;f)$ of a meromorphic function f is defined as follows

$$\Theta(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;f)}{T(r,f)}.$$
Definition 2. [4] For $a \in \mathbb{C} \cup \{\infty\}$, let $n_p(r, a; f)$ denotes the number of zeros of $f - a$ in $|z| \leq r$, where a zero of multiplicity $< p$ is counted according to its multiplicity and a zero of multiplicity $\geq p$ is counted exactly p times; and $N_p(r, a; f)$ is defined in terms of $n_p(r, a; f)$ in the usual way. We define

$$\delta_p(a; f) = 1 - \limsup_{r \to \infty} \frac{N_p(r, a; f)}{T(r, f)}.$$

Definition 3. [1] $P[f]$ is said to be admissible if

(i) $P[f]$ is homogeneous, or

(ii) $P[f]$ is non homogeneous and $m(r, f) = S(r, f)$.

Definition 4. The order ρ_f and lower order λ_f of a meromorphic function f are defined as

$$\rho_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

If f is entire, one can easily verify that

$$\rho_f = \limsup_{r \to \infty} \frac{\log |f|r^{\rho} M(r, f)}{\log r} \quad \text{and} \quad \lambda_f = \liminf_{r \to \infty} \frac{\log |f|r^{\lambda} M(r, f)}{\log r},$$

where $\log^k x = \log \left(\log^{k-1} x \right)$ for $k = 1, 2, 3, \ldots$ and $\log^0 x = x$.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [1] Let $P_0[f]$ be admissible. If f is of finite order or of non zero lower order and $\sum_{a \neq \infty} \Theta(a; f) = 2$ then

$$\lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} = \Gamma_{P_0}.$$

Lemma 2. [1] Let f be either of finite order or of non-zero lower order such that $\Theta(\infty; f) = \sum_{a \neq \infty} \delta_p(a; f) = 1$. Then for homogeneous $P_0[f],$

$$\lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} = \gamma_{P_0}.$$
Lemma 3. Let f be a meromorphic function of finite order or of non zero lower order. If $\sum_{a \neq \infty} \Theta(a; f) = 2$, then for any α,

\[
\Delta_{R}^{P_0}(\alpha; f) = (1 - \Gamma_{P_0}) + \limsup_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)}
\]

and \(\delta_{R}^{P_0}(\alpha; f) = (1 - \Gamma_{P_0}) + \liminf_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)}\).

Proof. In view of Lemma 1, we obtain that

\[
\Delta_{R}^{P_0}(\alpha; f) = 1 - \liminf_{r \to \infty} \frac{N(r, \alpha; P_0[f])}{T(r, f)}
\]

\[
\Gamma_{P_0} \left\{1 - \liminf_{r \to \infty} \frac{N(r, \alpha; P_0[f])}{T(r, P_0[f])}\right\} + (1 - \Gamma_{P_0})
\]

\[
= \Gamma_{P_0} \limsup_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, P_0[f])} + (1 - \Gamma_{P_0})
\]

\[
= \Gamma_{P_0} \left\{\limsup_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)} \cdot \liminf_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)}\right\} + (1 - \Gamma_{P_0})
\]

\[
= (1 - \Gamma_{P_0}) + \limsup_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)}.
\]

This proves the first part of the lemma.

Similarly we can prove the second part of the lemma.

Lemma 4. Let f be a meromorphic function of finite order or of non zero lower order. If $\Theta(\infty; f) = \sum \delta_p(\alpha; f) = 1$, then for any α,

\[
\Delta_{R}^{P_0}(\alpha; f) = (1 - \gamma_{P_0}) + \limsup_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)}
\]

and \(\delta_{R}^{P_0}(\alpha; f) = (1 - \gamma_{P_0}) + \liminf_{r \to \infty} \frac{m(r, \alpha; P_0[f])}{T(r, f)}\).

We omit the proof of Lemma 4 because it can be carried out in the line of Lemma 3.

Remark 1. The conclusions of Lemma 3 and Lemma 4 can also be drawn under the hypothesis $\delta(\infty; f) = \sum \delta(\alpha; f) = 1$.

On relative defects of differential polynomials 739
Remark 2. Let \(f \) be a meromorphic function of finite order or of non-zero lower order such that \(\delta (\infty; f) = \sum_{a \neq \infty} \delta (a; f) = 1 \). Then the conclusions of Lemma 3 and Lemma 4 can also be drawn under the hypothesis \(\delta (\infty; f) = 1 \).

Lemma 5. [3] Let \(k \) be any positive integer and \(\psi = \sum_{i=0}^{k} a_i f^{(i)} \), where \(a_i \) are meromorphic functions such that \(T (r, a_i) = S (r, f) \), for \(i = 0, 1, 2, \ldots, k \). Then \(m (r, \psi) = S (r, f) \).

3 Theorems.

In this section we present the main results of the paper.

Theorem 1. Let \(f \) be a meromorphic function of finite order \(\rho_f \) and \(a' \) be any non-zero finite complex number. Then
\[
\delta (0; f) + \Delta^{P_0}_R (\infty; f) + \delta (a; f) \leq (2 \gamma P_0 - 1) \Delta (\infty; f) + \Delta^{P_0}_R (0; f).
\]

Proof. Let us consider the following identity
\[
a \frac{f}{f} = 1 - \frac{f - a P_0 [f]}{P_0 [f]}.
\]

Since \(m (r, \frac{1}{f}) \leq m (r, \frac{a}{f}) + O (1) \), in view of Lemma 5 we get from the above identity
\[
m (r, \frac{1}{f}) \leq m \left(r, \frac{f - a P_0 [f]}{P_0 [f]} \right) + m \left(r, \frac{P_0 [f]}{f^{\gamma P_0-1}} \right).
\]
i.e.,
\[
m (r, \frac{1}{f}) \leq m \left(r, \frac{f - a P_0 [f]}{P_0 [f]} \right) + (\gamma P_0 - 1) m (r, f) + S (r, f). \quad (1)
\]

Now by Nevanlinna’s first fundamental theorem and by Lemma 5 it follows from (1) that
\[
m \left(r, \frac{1}{f} \right) \leq T \left(r, \frac{f - a P_0 [f]}{P_0 [f]} \right) - N \left(r, \frac{f - a P_0 [f]}{P_0 [f]} \right) + (\gamma P_0 - 1) m (r, f) + S (r, f)
\]
i.e.,
\[
m \left(r, \frac{1}{f} \right) \leq T \left(r, \frac{P_0 [f]}{f - a} \right) - N \left(r, \frac{f - a P_0 [f]}{P_0 [f]} \right) + (\gamma P_0 - 1) m (r, f) + S (r, f)
\]
On relative defects of differential polynomials

\[i.e., m\left(r, \frac{1}{f}\right) \leq N\left(r, P_0[f]\right) + m\left(r, \frac{P_0[f]}{(f-a)P_0}\right) + (\gamma P_0 - 1)m(r, f-a) - N\left(r, \frac{f-a}{P_0[f]}\right) + (\gamma P_0 - 1)m(r, f) + S(r, f) \]

\[i.e., m\left(r, \frac{1}{f}\right) \leq N\left(r, P_0[f]\right) - N\left(r, \frac{1}{f-a}\right) + 2(\gamma P_0 - 1)m(r, f) + S(r, f) \]

In view of \{p.34, [3]\} it follows from (2) that

\[m\left(r, \frac{1}{f}\right) \leq N\left(r, P_0[f]\right) + N\left(r, \frac{1}{f-a}\right) - N\left(r, f-a\right) - N\left(r, \frac{1}{P_0[f]}\right) + 2(\gamma P_0 - 1)m(r, f) + S(r, f) \]

\[i.e., \liminf_{r \to \infty} \frac{m\left(r, \frac{1}{f}\right)}{T(r, f)} \leq \liminf_{r \to \infty} \left\{ \frac{N\left(r, P_0[f]\right)}{T(r, f)} - \frac{N\left(r, f\right)}{T(r, f)} - \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} \right\} + \limsup_{r \to \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} + 2(\gamma P_0 - 1) \limsup_{r \to \infty} \frac{m(r, f)}{T(r, f)} \]

\[i.e., \liminf_{r \to \infty} \frac{m\left(r, \frac{1}{f}\right)}{T(r, f)} \leq \liminf_{r \to \infty} \frac{N\left(r, P_0[f]\right)}{T(r, f)} - \liminf_{r \to \infty} \frac{N\left(r, f\right)}{T(r, f)} - \liminf_{r \to \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} + \limsup_{r \to \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} + 2(\gamma P_0 - 1) \limsup_{r \to \infty} \frac{m(r, f)}{T(r, f)} \]

\[i.e., \delta(0; f) \leq \{1 - \Delta^P_R(\infty; f)\} - \{1 - \Delta(\infty; f)\} - \{1 - \Delta^P_R(0; f)\} + \{1 - \delta(a; f)\} + 2(\gamma P_0 - 1) \Delta(\infty; f) \]

\[i.e., \delta(0; f) + \Delta^P_R(\infty; f) + \delta(a; f) \leq (2\gamma P_0 - 1) \Delta(\infty; f) + \Delta^P_R(0; f) \]

This proves the theorem.
Remark 3. The sign ‘\(\leq \)’ in Theorem 1 cannot be replaced by ‘\(<\)’ only. This is evident from the following example.

Example 1. Let \(f = \exp z \), \(n_{01} = 1 \) and except for \(i = 0, j = 1 \); all other \(n_{ij} \) for each \(j \) and for \(i = 0, 1, 2, \ldots k \).

Then \(\Delta(\infty; f) = \Delta^{P_0}(0; f) = \Delta^{P_0}(\infty; f) = 1 \)
and \(\delta(0; f) = \delta(\infty; f) = 1. \)

So \(\delta(a; f) = 0. \) Also \(\gamma_{P_0} = 1. \)

Then \((2\gamma_{P_0} - 1) \Delta(\infty; f) + \Delta^{P_0}(0; f) = 2. \)

Theorem 2. If \(f \) be a transcendental meromorphic function with \(\rho_f < \infty \) and \(\sum_{a \neq \infty} \Theta(a; f) = 2 \) then

\[\delta(\infty; f) + \Delta^{P_0}(\infty; f) + \delta(0; f) \leq \gamma_{P_0} \Delta(\infty; f) + \Delta^{P_0}(0; f) + \Delta^{P_0}(\infty; f) \Gamma_{P_0} \]

Proof. Since \(f = P_0[f] \frac{f}{P_0[f]} \) we get that

\[m(r, f) \leq m(r, P_0[f]) + m \left(r, \frac{f}{P_0[f]} \right). \tag{3} \]

Now by Nevanlinna’s first fundamental theorem and by Lemma 4 we obtain from (3) that

\[m(r, f) \leq m(r, P_0[f]) + T \left(r, \frac{f}{P_0[f]} \right) - N \left(r, \frac{f}{P_0[f]} \right) \]
\[+ \gamma_{P_0} - 1 \right) m(r, f) - N \left(r, \frac{f}{P_0[f]} \right) + O(1). \tag{4} \]

Now in view of \(\{p.34, [3]\} \) it follows from (4) that

\[m(r, f) \leq m(r, P_0[f]) + N(r, P_0[f]) + N \left(r, \frac{1}{f} \right) - N(r, f) \]
\[- N \left(r, \frac{1}{P_0[f]} \right) + (\gamma_{P_0} - 1) m(r, f) + S(r, f) + O(1) \]
i.e., \(\lim \inf_{r \to \infty} \frac{m(r, f)}{T(r, f)} \leq \lim \inf_{r \to \infty} \left\{ \frac{N(r, P_0[f])}{T(r, f)} - \frac{N(r, f)}{T(r, f)} - \frac{N\left(r, \frac{1}{P_0[f]}\right)}{T(r, f)} \right\} \)

\[+ \lim \sup_{r \to \infty} \left\{ \frac{N\left(r, \frac{1}{f}\right)}{T(r, f)} + \frac{m(r, P_0[f])}{T(r, f)} + (\gamma_{P_0} - 1) \frac{m(r, f)}{T(r, f)} \right\} \]

i.e., \(\lim \inf_{r \to \infty} \frac{m(r, f)}{T(r, f)} \leq \lim \inf_{r \to \infty} \frac{N(r, P_0[f])}{T(r, f)} - \lim \inf_{r \to \infty} \frac{N(r, f)}{T(r, f)} - \lim \inf_{r \to \infty} \frac{N\left(r, \frac{1}{P_0[f]}\right)}{T(r, f)} \)

\[+ \lim \sup_{r \to \infty} \frac{N\left(r, \frac{1}{f}\right)}{T(r, f)} + \lim \sup_{r \to \infty} \frac{m(r, P_0[f])}{T(r, f)} + (\gamma_{P_0} - 1) \lim \sup_{r \to \infty} \frac{m(r, f)}{T(r, f)} \quad (5) \]

Now by Lemma 1 we obtain from (5) that
\[\delta(\infty; f) \leq \{1 - \Delta_{\rho_0}^R(\infty; f)\} - \{1 - \Delta(\infty; f)\} - \{1 - \Delta_{\rho_0}^R(0; f)\} \]

\[+ \{1 - \delta(0; f)\} + \lim \sup_{r \to \infty} \frac{m(r, P_0[f])}{T(r, P_0[f])} \lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} + (\gamma_{P_0} - 1) \Delta(\infty; f) \]

i.e., \(\delta(\infty; f) + \Delta_{\rho_0}^R(\infty; f) + \delta(0; f) \leq \gamma_{P_0} \Delta(\infty; f) + \Delta_{\rho_0}^P(0; f) + \Delta_{\rho_0}^P(\infty; f) \Gamma_{P_0}. \)

Thus the theorem is established.

Using the first part of Lemma 3, we may establish the next theorem under the same conditions in Theorem 2.

Theorem 3. Let \(f \) be a transcendental meromorphic function of finite order \(\rho_f \) and \(\sum_{a \neq \infty} \Theta(a; f) = 2. \) Then
\[\delta(\infty; f) + \delta(0; f) + 1 \leq \gamma_{P_0} \Delta(\infty; f) + \Delta_{\rho_0}^P(0; f) + \Gamma_{P_0}. \]
Proof. Using the first part of Lemma 3 and the inequality (5) it follows that

\[
\delta(\infty; f) \leq \left\{ 1 - \Delta_P^R(\infty; f) \right\} - \left\{ 1 - \Delta(\infty; f) \right\} - \left\{ 1 - \Delta_P^R(0; f) \right\} \\
+ \left\{ 1 - \delta(0; f) \right\} + \Delta_P^R(\infty; f) - (1 - \Gamma_P^R) + (\gamma_P^R - 1) \Delta(\infty; f)
\]

i.e., \(\delta(\infty; f) + \delta(0; f) + 1 \leq \gamma_P^R \Delta(\infty; f) + \Delta_P^R(0; f) + \Gamma_P^R. \)

Thus the theorem is proved.

Theorem 4. If \(f \) be a transcendental meromorphic function with \(\rho_f < \infty \), \(\delta(\infty; f) = 1 \) and \(\Theta(\infty; f) = \sum_{a \neq \infty} \delta_p(a; f) = 1 \) then

\[
1 + \Delta_P^R(\infty; f) + \delta(0; f) \leq \Delta_P^R(0; f) + \gamma_P^R \Delta_P^R(\infty; f) + \gamma_P^R.
\]

The proof of the theorem is omitted because it can be carried out in the line of Theorem 2 and with the help of Lemma 2.

Remark 4. If we omit the condition \(\delta(\infty; f) = 1 \) of Theorem 4 and the other conditions remaining the same, using the first part of Lemma 4 we may establish the following theorem without proof.

Theorem 5. Let \(f \) be a transcendental meromorphic function of finite order \(\rho_f \) and \(\Theta(\infty; f) = \sum_{a \neq \infty} \delta_p(a; f) = 1 \). Then

\[
\delta(\infty; f) + \delta(0; f) + 1 \leq \gamma_P^R \Delta(\infty; f) + \Delta_P^R(0; f) + \gamma_P^R.
\]

Theorem 6. Let \(a, b \neq 0, \infty \) be any two distinct complex numbers. Then for any meromorphic function \(f \) of finite order \(\rho_f \),

\[
2 \delta(a; f) + \delta(b; f) + 2 \Delta_P^R(\infty; f) \leq (3 \gamma_P^R - 1) \Delta(\infty; f) + 2 \Delta_P^R(0; f).
\]

Proof. Considering the identity

\[
\frac{b - a}{f - a} = \frac{P_0[f]}{f - a} \left\{ \frac{f - a}{P_0[f]} - \frac{f - b}{P_0[f]} \right\},
\]

we obtain in view of Lemma 5 that

\[
m\left(r, \frac{b - a}{f - a} \right) \leq m\left(r, \frac{f - a}{P_0[f]} \right) + m\left(r, \frac{f - b}{P_0[f]} \right) + m\left(r, \frac{P_0[f]}{(f - a)^{\gamma_P^R}} \right) \\
+ (\gamma_P^R - 1) m\left(r, f - a \right)
\]
On relative defects of differential polynomials

\[i.e., \, m\left(r, \frac{b-a}{f-a} \right) \leq T \left(r, \frac{f-a}{P_0[f]} \right) - N \left(r, \frac{f-a}{P_0[f]} \right) + T \left(r, \frac{f-b}{P_0[f]} \right) - N \left(r, \frac{f-b}{P_0[f]} \right) + (\gamma_{P_0} - 1) \, m \left(r, f \right) + S \left(r, f \right). \]

(6)

Since \(m\left(r, \frac{1}{f-a} \right) \leq m\left(r, \frac{b-a}{f-a} \right) + O(1) \) and \(T \left(r, f \right) = T \left(r, \frac{1}{f} \right) + O(1) \), it follows from (6) that

\[m\left(r, \frac{1}{f-a} \right) \leq T \left(r, \frac{P_0[f]}{f-a} \right) - N \left(r, \frac{f-a}{P_0[f]} \right) + T \left(r, \frac{P_0[f]}{f-b} \right) - N \left(r, \frac{f-b}{P_0[f]} \right) + (\gamma_{P_0} - 1) \, m \left(r, f \right) + S \left(r, f \right) + O(1) \]

i.e.,

\[m\left(r, \frac{1}{f-a} \right) \leq N \left(r, \frac{P_0[f]}{f-a} \right) + m\left(r, \frac{P_0[f]}{(f-a)^{\gamma_{P_0}}} \right) + (\gamma_{P_0} - 1) \, m \left(r, f-a \right) - N \left(r, \frac{f-a}{P_0[f]} \right) + N \left(r, \frac{P_0[f]}{f-b} \right) + m\left(r, \frac{P_0[f]}{(f-b)^{\gamma_{P_0}}} \right) + (\gamma_{P_0} - 1) \, m \left(r, f-b \right) - N \left(r, \frac{f-b}{P_0[f]} \right) + (\gamma_{P_0} - 1) \, m \left(r, f \right) + S \left(r, f \right) + O(1) \]

i.e.,

\[m\left(r, \frac{1}{f-a} \right) \leq N \left(r, \frac{P_0[f]}{f-a} \right) - N \left(r, \frac{f-a}{P_0[f]} \right) + N \left(r, \frac{P_0[f]}{f-b} \right) - N \left(r, \frac{f-b}{P_0[f]} \right) + 3 \left(\gamma_{P_0} - 1 \right) \, m \left(r, f \right) + S \left(r, f \right). \]

(7)
In view of \{p.34, [3]\} we get from (7) that

\[
m \left(r, \frac{1}{f-a} \right) \leq N \left(r, P_0[f] \right) + N \left(r, \frac{1}{f-a} \right) - N \left(r, f - a \right) - N \left(r, \frac{1}{P_0[f]} \right) + N \left(r, \frac{1}{f-a} \right)
\]

\[
+ N \left(r, P_0[f] \right) + N \left(r, \frac{1}{f-b} \right) - N \left(r, f - b \right)
\]

\[
- N \left(r, \frac{1}{P_0[f]} \right) + 3 (\gamma_{P_0} - 1) m(r, f) + S(r, f)
\]

i.e.,

\[
m \left(r, \frac{1}{f-a} \right) \leq 2 N \left(r, P_0[f] \right) - 2 N \left(r, f \right) - 2 N \left(r, \frac{1}{P_0[f]} \right) + N \left(r, \frac{1}{f-a} \right) + N \left(r, \frac{1}{f-b} \right) + 3 (\gamma_{P_0} - 1) m(r, f)
\]

\[
+ S(r, f)
\]

i.e.,

\[
\liminf_{r \to \infty} \frac{m \left(r, \frac{1}{f-a} \right)}{T(r,f)} \leq 2 \liminf_{r \to \infty} \left\{ \frac{N \left(r, P_0[f] \right)}{T(r,f)} - \frac{N \left(r, f \right)}{T(r,f)} - \frac{N \left(r, \frac{1}{P_0[f]} \right)}{T(r,f)} \right\}
\]

\[
+ \limsup_{r \to \infty} \left\{ \frac{N \left(r, \frac{1}{f-a} \right)}{T(r,f)} + \frac{N \left(r, \frac{1}{f-b} \right)}{T(r,f)} + 3 (\gamma_{P_0} - 1) \frac{m(r, f)}{T(r,f)} \right\}
\]

i.e.,

\[
\liminf_{r \to \infty} \frac{m \left(r, \frac{1}{f-a} \right)}{T(r,f)}
\]
On relative defects of differential polynomials

\[
\leq 2 \left\{ \liminf_{r \to \infty} \frac{N(r, P_0 [f])}{T(r, f)} - \liminf_{r \to \infty} \frac{N(r, f)}{T(r, f)} - \liminf_{r \to \infty} \frac{N(r, \frac{1}{P_0 [f]})}{T(r, f)} \right\}
\]

\[
+ \limsup_{r \to \infty} \frac{N(r, \frac{1}{f-a})}{T(r, f)} + \limsup_{r \to \infty} \frac{N(r, \frac{1}{f-b})}{T(r, f)} + 3 (\gamma P_0 - 1) \limsup_{r \to \infty} \frac{m(r, f)}{T(r, f)}
\]

i.e., \(\delta(a; f) \leq 2 \{ 1 - \Delta P_0^R (\infty; f) \} - 2 \{ 1 - \Delta (\infty; f) \} - 2 \{ 1 - \Delta P_0^R (0; f) \} + \{ 1 - \delta(a; f) \} + \{ 1 - \delta(b; f) \} + 3 (\gamma P_0 - 1) \Delta (\infty; f) \)

i.e., \(2 \delta(a; f) + \delta(b; f) + 2 \Delta P_0^R (\infty; f) \leq (3 \gamma P_0 - 1) \Delta (\infty; f) + 2 \Delta P_0^R (0; f) \).

This proves the theorem.

Theorem 7. Let \(a \) be a finite complex number and \(b, c \) be two distinct non-zero complex numbers. Then for any meromorphic function \(f \) with finite order \(\rho_f \) and \(\sum_{a \neq \infty} \Theta(a; f) = 2 \),

\[
\delta(a; f) + \Gamma P_0 \{ \delta P_0^R (b; f) + \delta P_0^R (c; f) \} \leq (\gamma P_0 - 1) \Delta (\infty; f) + 2 \Gamma P_0.
\]

Proof. Since \(\frac{1}{f-a} = \frac{P_0 [f]}{f-a} \frac{1}{P_0 [f]} \), by Lemma 5 we obtain that

\[
m(r, \frac{1}{f-a}) \leq m(r, \frac{1}{P_0 [f]}) + m(r, \frac{P_0 [f]}{(f-a) P_0}) + (\gamma P_0 - 1) m(r, f)
\]

i.e., \(m(r, \frac{1}{f-a}) \leq m(r, \frac{1}{P_0 [f]}) + (\gamma P_0 - 1) m(r, f) + S(r, f) \). (8)

Applying Nevanlinna’s first fundamental theorem we get from (8) that

\[
m(r, \frac{1}{f-a}) \leq T(r, \frac{1}{P_0 [f]}) - N(r, \frac{1}{P_0 [f]}) + (\gamma P_0 - 1) m(r, f) + S(r, f).
\]

(9)
Now by Nevanlinna’s second fundamental theorem it follows from (9) that
\[
m(r, \frac{1}{f - a}) \leq \bar{N}(r, \frac{1}{P_0[f]}) + \bar{N}(r, \frac{1}{P_0[f] - b}) + \bar{N}(r, \frac{1}{P_0[f] - c}) - N(r, \frac{1}{P_0[f]}) + (\gamma P_0 - 1)m(r, f) + S(r, f).
\] (10)

Since \(\bar{N}(r, \frac{1}{P_0[f]}) - N(r, \frac{1}{P_0[f]}) \leq 0\), we obtain from (10) in view of Lemma 1 that
\[
m(r, \frac{1}{f - a}) \leq \bar{N}(r, \frac{1}{P_0[f] - b}) + \bar{N}(r, \frac{1}{P_0[f] - c}) + (\gamma P_0 - 1)m(r, f) + S(r, f)
\]
i.e., \(m(r, \frac{1}{f - a}) \leq \bar{N}(r, \frac{1}{P_0[f] - b}) + \bar{N}(r, \frac{1}{P_0[f] - c}) + (\gamma P_0 - 1)m(r, f) + S(r, f)
\]
i.e., \(m(r, \frac{1}{f - a}) \leq T(r, \frac{1}{P_0[f] - b}) + T(r, \frac{1}{P_0[f] - c}) - m(r, \frac{1}{P_0[f] - b}) - m(r, \frac{1}{P_0[f] - c}) + (\gamma P_0 - 1)m(r, f) + S(r, f)
\]
i.e., \(m(r, \frac{1}{f - a}) \leq 2T(r, P_0[f]) - m(r, \frac{1}{P_0[f] - b}) - m(r, \frac{1}{P_0[f] - c}) + (\gamma P_0 - 1)m(r, f) + S(r, f)
\]
i.e., \(\liminf_{r \to \infty} \frac{m(r, \frac{1}{f - a})}{T(r, f)} \leq 2\liminf_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} - \liminf_{r \to \infty} \frac{m(r, \frac{1}{P[f] - b})}{T(r, f)} - \liminf_{r \to \infty} \frac{m(r, \frac{1}{P[f] - c})}{T(r, f)} + (\gamma P_0 - 1)\limsup_{r \to \infty} \frac{m(r, f)}{T(r, f)}
\)
On relative defects of differential polynomials

i.e., \(\liminf_{r \to \infty} \frac{m(r, \frac{1}{f-a})}{T(r, f)} \leq 2 \liminf_{r \to \infty} \frac{T(r, P_0 [f])}{T(r, f)} - \liminf_{r \to \infty} \frac{m(r, \frac{1}{f-b})}{T(r, P_0 [f])} \liminf_{r \to \infty} \frac{T(r, P_0 [f])}{T(r, f)} \)

\[\text{i.e., } \delta(a; f) \leq 2 \Gamma_{P_0} - \delta^P_A (b; f) \cdot \Gamma_{P_0} - \delta^P_A (c; f) \cdot \Gamma_{P_0} + (\gamma_{P_0} - 1) \Delta(\infty; f) \]

\[\text{i.e., } \delta(a; f) + \Gamma_{P_0} \left\{ \delta^P_A (b; f) + \delta^P_A (c; f) \right\} \leq (\gamma_{P_0} - 1) \Delta(\infty; f) + 2 \Gamma_{P_0}. \]

Thus the theorem is established.

In the line of Theorem 7 we may state the following theorem without proof.

Theorem 8. Let \(a' \) be a finite complex number and \(b, c \) be two distinct non-zero complex numbers. Then for any meromorphic function \(f \) with finite order \(\rho_f \) and \(\Theta(\infty; f) = \sum_{a \neq \infty} \delta_p(a; f) = 1 \),

\[\delta(a; f) + \gamma_{P_0} \left\{ \delta^P_A (b; f) + \delta^P_A (c; f) \right\} \leq (\gamma_{P_0} - 1) \Delta(\infty; f) + 2 \gamma_{P_0}. \]

References

Received: September, 2008