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Abstract

This paper presents the asymptotic eigenvalues of the Sturm-Liouville
problems with Neumann condition. In this paper we apply the concept
of turning points of second order differential equation. Note that the
weight function in this equation has two zeros in domain. By making use
of the solutions of equation we obtain the higher-order approximations
to the eigenvalues for the Neumann boundary conditions.
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1 Introduction

We consider the second order differential equation

d2

G = € =) @, gelatl a<-1b>1 (1)
with the Neumann boundary conditions w'(a) = w'(¢) = 0 where a < ¢ < b.
Here u is a large real-value parameter. The weight function, () = €2 — 1
has two zeros in 1 and —1 so they are called turning points of this equation.
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Differential equations with turning points have various applications in math-
ematics, elasticity, optics, geophysics and other branches of natural sciences
(see[2],[6]). Turning points appear in branches of natural sciences for example
physic, optics, geophysics and etc. Moreover, a wide class of differential equa-
tions with Bessel-type singularities can be reduced to differential equations
having turning points. Some aspect of the turning point theory and a number
of applications are described in [6,4,5,7,8,10].

2 Approximation of the solutions

In [9], one may find the asymptotic expansion of solutions of equation (1).The
differential equation (1) for each nonnegative and integer value of n, has a pair
of infinitely differential solutions wi(u, §), ws(u, &) are given by their approxi-
mations wa,41.1(u, &), Wapt1.2(u, &)

w2n+1,1(u7 f) =0 (U, g) zn: AS(S)U_QS M

s=0

-2 Z B —25 (2>

8U2u§

w2n+1,2(u7§) U2 U f ZA u o+ u? Z B u (3>

where Ag(&) = 1, and B;(&), As(€) are defined in [8] and Uy (u, ), Us(u, &) are
two independent solution of equation
0*U

ez = e U ¢

are given by (u — 00)

Ui ) = VIRT(; + 3) 0 (50 At (1+0W™),  (5)

) u R () Bt (1 0w ™). (6)

The Airy functions 4;(u2n¢), Bi(uZne) are two independent solutions of equa-
tion

Us(u, ) = {‘/EF(% -

d*W 5
o = )
where
) 2 ¢ 2
ng——g (1—7’2)2d73 0<E<, ng——g (1—7’2)5de 1<¢
§ 1
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In order to compute the approximations of solutions we need different form of
the Airy function. In the boundary conditions, W’(a) = W'(c) = 0, we have
chosen ¢ in the (0,b), therefore the Airy functions have different asymptotic
forms for 0 < ¢ < 1 and 1 < ¢ < b. We have the asymptotic forms of Airy
functions on domain [0, b]. If we want to get the asymptotic forms of solutions
on [a,b], we must use the connection formulas of Uy, U,

Ur(u, —=§) = COS( )0y (u, &) +Sm( Uy (u, &), 9)

Us(u, =€) = COS( Uy (u, €) — Sln( ) Uy(u, €). (10)

There is a relation between the funct10n Ui, Us and the derivation of Uy, Us.
These relations are given by the following forms

Ul(a,6) = 000, ~ (e~ 1,6). Uk &) = sUa(0.€) ~ Upla+ 1,6).
(1)

So, for £ > 0 by inserting (11) in (3) and (2) we obtain the solutions W, Wy

Wi (u, &) = Uy(u, f)i A(Ou™ + u?(ug — V2u) Z By(&u™>  (12)

s=0 s=0

Wa(u, €) 2= Uz(u, )Y As(§)u™ +u™(V2u —ug) Y Bo(§u ™. (13)
s=0 s=0
By using the connection formulas (9),(10), we get the solutions equation (1)

n [a,b]. In [8] Olver investigated the solutions of (1). He proved that the
solutions of equation (1) are in the following forms

Wi(u, &) = U(u, §)(1+ O(u™)), Wa(u, &) = Us(u,§)(1+ O(u™)). (14)

3 Derivative of solutions

Now for £ > 0, by using the derivative of U;(u, ) and Us(u, &) we will have

oW1 (u, 1,1 2 1 3 2 5 _
19(5 ) _ 2Vamil (5 +5) 12(52% ) A(u? 5)(5‘2_“_6 ©)(1+0(u
(15)
= Wi, €)(€u— Ve "), (€)= onf
similarly, we can show that
IWa(w,6) _ Wo(u, €)(Eu — v2ue™"®), (16)

U3

),
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For £ < 0, the derivative of Wi (u, §), Wa(u, §) respect to &, are in the following
forms

an(u7§) e TU -1 —o
o = [5111(7) + O(u™ YW (u, —€)(Eu + V2ue @)
+leos(5- 5 5) o+ O™ Wau, —€)(€u+ v2ue”®), (17)
_awg(g_, )~ feos(5) + O )W ot —€) (~€u — v2ue~9)
+[— sm( 5 ) + O(u YWy (u, —€)(—&u — vV2ue?=9). (18)

4 Asymptotic eigenvalues

Some aspects for asymptotic eigenvalues of the boundary value problems have
been considered in [1] and [3]. In [1], Atkinson and Mingarelli had found the
asymptotic representation of the eigenvalues of equations (1)

n?m?

Ay~ —, (19)
Ja(1 = 7)dr

where (1 — 72), denotes the positive part of (1 — 72) and (1 — 7%)_ denotes
the negative part of (1 — 72). The eigenvalues of equation (1) with boundary
conditions W'(a) = W'(c) = 0 are the zeros of A(u) where
Wi(u,a) Ws(u,a)
Wilu,¢) Wi(u,c) |

Au) = (20)

If we put £ = a in the equation (17), £ = ¢ in (18) and multiply them we will
have

oWy (u,a) " OWs(u, )

{[sm( 5 ) + O(u™H)|Wi (u, —a)(au 4+ v2ue ™)

(95 23
‘1”[005( 5 ) + O(u™ M |Wa(u, —a)(au + \/ﬁe"(“))} Wa(u, ) (cu — vV2ue ™).
(21)
awz(g,a) < ana(gu’ ) = {lcos(5) + O )W (1, —a)(—au — vZue~ =)
+[sin(~- 5 ")+ O(u)Walu, —a) (au + 2ue"(“))} Wi (u, ¢) (cu — V2ue ™).

(22)
From above calculation we get

awla(g, a) % aWQa(:, C) _ [Sln(%) + O(u_l)]Wl(u, —G>WQ(U/7 C)Tl




Neumann conditions for Sturm-Liouville problems 555

+cos(5 5 ©) -+ O(u)Walu, ) Wa(u, —a)Th, (23)
similarly we can write

oWy (u,a)  OWi(u,c)
oc o

[sin( 5 ) + O(u YW1 (u, e)Wa(u, —a)Ts

. cos%) + O™ Wa(u, &) Wa(u, —a)Ty (24)
where
Ty = acu? — auv2ue® + cuv/2ue™ D — 2u\/2ue @79
Ty = acu® — auv2ue’® + cunv/2ue” " — 2u\/2ue? @),
Ty = acu® — auv2ue 9 + cuv/2ue® = — 2u\/2ue~ (o)
T, = acu® — auv/2ue™ " 4 cuv/2ue " — 2uy/2ue~ ==, (25)

From A(u) = 0, we know that (23) is equal with (24). So we will have
[sm( 5 )+O( DWW (u, —a)Wa(u, c)Tﬁ-cos( )+O( “DIWa(u, —a)Wa(u, e) Ty

= [sm( 5 )—I—O( DWW (u, —a)Wo(u, )Tz~ Cos( )+O( “HIWa(u, —a)Wa(u, c)Ty,

Now, after calculations we find
mu,  —Wa(u, —a)Wa(u, )Ty — Wi (u, —a)Wi(u, c)Ty

tan(_) - Wl (u7 _a>W2(ua C)Tl W2(u7 _a)Wl (u’ C)T3

5 (14+0(u™)). (26)

From (2) and (3) we know that Wy (u,&) = U;(u, &) K1(n, &) and Wa(u, &) =
U2(u7 €>K2(n7 5) where

Ki(n,€) = > Ad&)u™™ + u(ug — v2u) Z By(&)u™ (27)

na:ﬁi&@w4ﬂwf%%ﬂ—u®§;&@m*f 29

If we insert (27),(5) and (6) in (26), then we obtain

U
tan(—) =
an(2)

Ui(u, —a)Ui (u, c)Ki(n, —a) K1 (n, ¢)Ty + Us(u, —a)Us(u, c) K2 (n, —a)Ka(n, ¢)Th
Ui (u, e)Us(u, —a) K1 (n, c)Ka(n, —a)Ts3 — Uy (u, —a)Us(u, ¢) K1 (n, —a) Ka(n, c) T}

(29)
If we calculate the right hand of (29), then we will have,
U L1T4 + L2T2 _9
tan(—) = ——F=(1+0 . 30
() = PR o) (30)
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W

where, L;(i = 1,2,3,4) are in following forms, if we consider p(§) = (—n¢)~
,then

L1 = u3(1 + sin B) +ud(1 + sin 8)(cBo(c) — aBo(—a)) — 3 wour cos B(u(—a) + M(C))l +0(u™?),
Lo = u3(1 —sin 8) + u3(1 — sin 8)(aBo(—a) — ¢Bo(c)) + Suoul cos B(u(—a) + y(c)); +0u™?),

Ly = cos §+ {Suous (k(~a) + u(e)) + sin B(a(e) + pu(~a)) + (@Bo(~a) + cBo(e))} = + O(u™?),
La = —ud cos f+ Suous (u(~a) + () — sin f(~a) + (@) + (@Bo(—a) + cBo(0)— +O(w™>).  (31)

If we suppose © = %(1 + O(u™?)), then we can write tan(%) = z. By

expression the following theorem, we can acquire eigenvalues of the equation
(1).

Theorem 4.1 The equation (1) with Neumann condition, W'(a) = W'(c) =

0 ,when 0 < c <1, a< —1, has asymptotic eigenvalues in the following form
dmm+m

— _ dmrdm 2 o
U = gy tm where m is in form of

A { AsBy — A1By  AB?— A3;B1By  A1B3 — AyB, B2 } ()

Ty = —
"B V2A, B, (2m)1/? 44, B3m 224, B2(2m)3/2
(32)
Proof : We know, x = %, now we must calculate the quantity of x.

We can calculate LTy + LyT5 and L3T5 + LT} in the following form
LT3+ LaT) = u2 cos B(ae™ ) +ce” 4 e — ce?(=D)yn/2u + u(—2u2 cos Be”~0)=7(9)

+2u? cos e (77D L e + acGy) + 2(—Ge” ") _ G @ —ol=a)y,

(33)

LiTy+ LoTy = 2acu+{(1+sin 3)(ce 7Y —ae™7(@) 4 (1 —sin ) (ce” " —ae” @) Yuuv/2u
+{ac(G1 4 G2) — 2u2(1 + sin B)e 7 (D=7() _ 92,2(1 — sin B)e”(—VHo (),

(G D=0 4 Gyeo-a)toe)y. (34)

We consider

Ap = {(1 +sinB)(ce Y —ae™)) 4+ (1 — sin 8) (ce Y — ae”©) }ul

Ay = {ac(Gy + Gy) — 2u2(1 + sin §)e 7D~ _ 22(1 — sin B)e” -V Fo(9)}
Az = 2acu? — 2(Gre V79 1 G, eo(-a)tal@)

By = u?cos flae™9 4 ce”Y 4 cem7©) — 7(-))

By = u(—2u? cos e D7) 4 22 cos 77Dt acGs 4 acGy)

By = —2(Gyea=o(0) | Gyeo-aole))

G1 = ug(1 + sin 3)(cBo(c) — aBo(—a)) — guoul cos f(u(—a) + p(c))

G = w3(1 — sin §) (aBo(~a) — cBo(e)) + Suous cos H(u(a) + p(c))

Gs = {guwl(u(—a) + pu(e)) +sin B(u(c) + p(=a)) + (aBo(—a) + cBo(c)) }
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3

Gy = {Zuow (p(—a)—p(c)) —sin f(u(—a)+u(c) —(aBo(~a)+cBo(c))}
(35)
: : a1 A o fau
Now by using A;,B;(I = 1,2,3),we can write ,x = B_1(1+ BQIU_%_ Bglu_% ). By
V2B; V2Bq

dividing we can show that, z is in the following form

Al AgBl — A1B2 _1 AlBQ — AgBl 1 32 AlBQ — AgBl

3
—{1+ 4B ————— ) 2}+0(u?).
B (S e B B 0

xr =

Because the values of u are large parameters, then the values of m are large
numbers, therefore the m!* asymptotic of eigenvalues

m7r+% 2 1 T
Um = — — T, U 2m7 7/ \/ (1 - @Qd(p =5
/4 VI —@?dp T ! 2

where the quantity of x,, is in the following form

Ty —

Ay ) AsBy — A1By  A1B? — AyB1By  A1B3 — AyB1B2 O-?)
B1 \/§A1B1(2m)1/2 4AlB%m 2\/§A1B%(2m)3/2 ‘

Theorem 4.2 The equation (1) with Neumann condition, W'(a) = W'(c) =
0, when,1 <c<b, b>1, a< —1, has asymptotic eigenvalues in the fol-

lowing ty,, = —rimrtn__ _ 24 where T,, 1S
4]—11 V (éf dgo. hﬂ 1 3uq ,% 94D 1
rm=—{1+ —,sin (U(_a))\/T—m + (u—onb + 2a 0(—a))%
6v/2u; sinh(o(—a)) -2 1 _
+ — 1, 2 4+ V2By(—a))——=—=} + O(m™2).
T 4 V2By(—a) T} + O(m™?)
Proof: We know f(?cr c(%l}), MK T 1+ 0 .
an(—)r = ———— u ).
2 My K11'Th
In order to compute the eigenvalues we use the following notations
My = Y22 (1) ugs (Fup™ (—a)) =%, My = 3232 (1) uss (Fup" (c)) 2%,
Mz = Y22 (= 1) ugspr Gup™ (—a)) "7, My = 3320(—1) ugsr1 (Fup~ ' (¢) 727!
Ki(n,—a) = K11, Ki(n,c) = K, Ks(n,—a) = Ka1, Ka(n,c) = K.
(37)
Now by calculation we get
M4 3U1 _3 1 _9
— =1+ —n,2 (0] 38
=L e - 0l (3)
T 2
2214 V2 (60(—a) — e—a(—a)) + 0™,

Ty av/u
(39)
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K 1
2 =14 2(ua + V2u) By(—a)—= + O(u™?).
K11 U2

If we multiply (39) by (38) and put it in (36) then we will have

242 1 3 _3 1
v=—{1+ T\/_smh(o(—a))—u + (%n,, : 4 20B0(—a))~
0

Vu U
Gﬁulsinh(a(—a))n;g+\/§Bo(_a> 1

+( }+O(u™?). (40)

Because the values of u are large parameters, then the values of m are large
numbers, therefore the m'* asymptotic of eigenvalues are in form of

mm + 7 2

Uy, = — —Tm
fi1 \ (1 —p2dp T
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