Approximation to Functions from the Classes of \(\bar{\psi} \) - Integrals by the Zygmund Sums

Üğur Değer

Department of Mathematics, Faculty of Science and Literature
Mersin University, Mersin, 33343, Turkey
degpar@hotmail.com

Abstract

In this paper we investigate the approximation by the Zygmund sums in a given class of certain functions. Especially, we get asymptotic formulas which the Kolmogorov-Nikol’skii problem is solved in a given metric of the certain space for the given class of functions which satisfy the various conditions, i.e. asymptotic formulas for the value

\[E_n(C^\bar{\psi}_\infty, Z^s_n(x)) = \sup_{f \in C^\bar{\psi}_\infty} \|f(x) - Z^s_n(f; x)\|_C, \]

under the various conditions on functions \(\psi_1(\cdot) \) and \(\psi_2(\cdot) \).

Mathematics Subject Classification: 30E99, 42A05, 42A16

Keywords: Zygmund sums, \(\bar{\psi} \)-integrals, periodic functions

1 Statement of the Problem.

Let \(L \) denote the space of integrable \(2\pi \)-periodic functions, and let

\[S[f] = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) \equiv \sum_{k=0}^{\infty} A_k(f; x) \]

be the Fourier series of a function \(f \in L \). The polynomials that have the form

\[Z^s_n(f; x) = \frac{a_0}{2} + \sum_{k=1}^{n-1} (1 - \left(\frac{k}{n}\right)^s) A_k(f; x) \quad , s > 0 \]
are called the Zygmund sums. Within chapter IV in [6], C^ψ_∞ is class of 2π-periodic continuous functions which represented in the form of convolution

\[
f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x-t)\Psi(t)dt = \frac{a_0}{2} + (f\overline{\psi} * \Psi)(x),
\]

where $\Psi(x)$ is a certain function that has the Fourier series

\[
\sum_{k=1}^{\infty} (\psi_1(k) \cos kx + \psi_2(k) \sin kx),
\]

$\overline{\psi} = (\psi_1, \psi_2)$ is a pair of arbitrary fixed systems of numbers $\psi_1(k)$ and $\psi_2(k)$, $k = 1, 2, \cdots$. Here, the function φ is called $\overline{\psi}$-derivative of function f, and is denoted by $f\overline{\psi}(\cdot)$, ess sup $|f\overline{\psi}(t)| \leq 1$, $\int_{-\pi}^{\pi} f\overline{\psi}(t)dt = 0$.

In [6], if $\psi_1(v) = \psi(v) \cos \frac{\beta \pi}{2}$ and $\psi_2(v) = \psi(v) \sin \frac{\beta \pi}{2}$, then the classes C^ψ_∞ coincide with the classes $C^\psi_{\beta, \infty}$. Moreover, if $\psi(v) = v^{-r}$, then the classes C^ψ_∞ coincide with the well known the classes $W^r_{\beta, \infty}$-Weil-Nagy.

We will give asymptotic results related to estimation of the value

\[
E_n(C^\psi_\infty, Z^s_n) = \sup_{f \in C^\psi_\infty} \|f(x) - Z^s_n(f; x)\|_C
\]

under various conditions on functions $\psi_1(\cdot)$ and $\psi_2(\cdot)$, where $\|\varphi\|_C = \max_x |\varphi(x)|$.

The value $E_n(\mathfrak{M}, Z^s_n)_{\mathfrak{M}}$ was investigated by many mathematicians. Some of whom are A. Zygmund [8] that investigated in case of $\mathfrak{M} = W^r_{\infty}$, $r > 0$; B. Nagy, S. A. Teljakovski [5], [7] that investigated in case of $\mathfrak{M} = W^r_{\infty}$ under various conditions on β, s, r; A. I. Stepanets, D. N. Busev [6], [1] that investigated in case of $\mathfrak{M} = C^\psi_{\beta, \infty}$ under the condition on function $\psi(\cdot)$; A. S. Federenko, [3], [4] and U. Değer, [2] that investigated in case of $\mathfrak{M} = C^\psi_\infty$ under the various conditions on functions $\psi_1(\cdot)$ and $\psi_2(\cdot)$, respectively.

The value of (1) is depend on the functions $g_i(v) = v^s\psi_i(v), i = 1, 2$, which are convex upwards or convex downwards. There are five possible cases for functions $g_i(v), i = 1, 2$:

a) $g_i(v)$ are convex downwards with $\lim_{v \to \infty} g_i(v) = \infty$,

b) $g_i(v)$ are convex downwards with $\lim_{v \to \infty} g_i(v) = C > 0$,

c) $g_i(v)$ are convex downwards with $\lim_{v \to \infty} g_i(v) = 0$,

d) $g_i(v)$ are convex upwards with $\lim_{v \to \infty} g_i(v) = c > 0$,

e) $g_i(v)$ are convex upwards with $\lim_{v \to \infty} g_i(v) = \infty$.
In [2], we gave the some asymptotic equalities in the cases of d) and e) and in this paper, we obtain some asymptotic results in case of a) for $\psi_1 \in M$ (or $-\psi_1 \in M$), and $\psi_2 \in M'$ (or $-\psi_2 \in M'$) about value (1). Here, in [6, Chpt.IV], M denotes the set of continuous positive functions $\psi(\cdot)$ which are convex downwards for all $v \geq 1$ and with $\lim_{v \to \infty} \psi(v) = 0$ and M' denotes the subset of functions $\psi(\cdot)$ from M that satisfy in addition the following condition:

$$\int_1^\infty \frac{\psi(t)}{t} dt < \infty.$$

2 Main Results.

Theorem 2.1. Let $\psi_1 \in M$, $\psi_2 \in M'$ and $g_i(v) = v^s \psi_i(v)$, $s > 1$, $i = 1, 2$, be convex downwards on $v \geq b \geq 1$ with $\lim_{v \to \infty} g_i(v) = \infty$. Then as $n \to \infty$, we have

$$E_n(C^\psi, Z_n^s) = \frac{2}{\pi n^s} \int_1^n v^{s-1} \psi_2(v) dv + \frac{2}{\pi} \int_{n}^{\infty} \frac{\psi_2(v)}{v} dv + O(1) \bar{\psi}(n),$$

(2)

where $\bar{\psi}(n) = (\psi_1^2(n) + \psi_2^2(n))^{1/2}$ and $O(1)$ is a quantity uniformly bounded in n.

Let $\psi \in M$ and $\alpha(t) = \frac{\psi(t)}{t|\psi'(t)|}$ for $t \geq 1$. If there exist $\lim_{t \to \infty} \alpha(t)$, then let us denote value of this limit by $\alpha_0(\psi) \overset{df}{=} \lim_{t \to \infty} \alpha(t)$. Therefore we get the following corollary:

Corollary 2.2. Let $\psi_1 \in M$, $\psi_2 \in M'$ and $g_i(v) = v^s \psi_i(v)$, $s > 1$, $i = 1, 2$, be convex downwards on $v \geq b \geq 1$ with $\lim_{v \to \infty} g_i(v) = \infty$. If $\alpha_0(\psi_2) = \infty$, then as $n \to \infty$, we have the following asymptotic equality:

$$E_n(C^\psi, Z_n^s) = \frac{2}{\pi} \int_{n}^{\infty} \frac{\psi_2(v)}{v} dv + O(1) \bar{\psi}(n).$$

Remark 2.3. The same problem was investigated by A. S. Fedorenko in [3] and also in case of $\psi_1(v) = \psi(v) \cos \frac{\beta \pi}{2}$ and $\psi_2(v) = \psi(v) \sin \frac{\beta \pi}{2}$ by D. N. Busev, [1], but they didn’t find exact asymptotic equalities for value (1).
Corollary 2.4. Let \(\psi_1 \in \mathcal{M} \), \(\psi_2 \in \mathcal{M}' \) and \(g_i(v) = v^s \psi_i(v) \), \(s > 1 \), \(i = 1, 2 \), be convex downwards on \(v \geq b \geq 1 \) with \(\lim_{v \to \infty} g_i(v) = \infty \) or \(\lim_{v \to \infty} g_i(v) = c_i \geq 0 \). If \(\alpha_0(\psi_2) = 1/s \) then as \(n \to \infty \), we have the following asymptotic equality:

\[
\mathcal{E}_n(C_\infty^\psi, Z_n^s)_C = \frac{2}{\pi n^s} \int_1^n v^{s-1} \psi_2(v) dv + O(1) \psi(n).
\]

Corollary 2.5. Let \(\psi_1 \in \mathcal{M} \), \(\psi_2 \in \mathcal{M}' \) and \(g_i(v) = v^s \psi_i(v) \), \(s > 1 \), \(i = 1, 2 \), be convex downwards on \(v \geq b \geq 1 \) with \(\lim_{v \to \infty} g_i(v) = \infty \). If \(\alpha_0(\psi_2) \in (1/s, \infty) \), then as \(n \to \infty \), we have

\[
\mathcal{E}_n(C_\infty^\psi, Z_n^s)_C = O(1) \psi(n).
\]

If we take functions \(\psi_i(t) = \frac{1}{\ln \alpha_i(t + 2)} \), \(\alpha_i > 1 \) and \(\psi_i(t) = \frac{\ln(\sqrt{x} + c_i)}{x^r_i} \), \(1 < r_i < s \), \(c_i > 0 \), \(i = 1, 2 \), \(\frac{\psi_2(t)}{\psi_1(t)} \neq \text{const} \), then these functions satisfy the conditions of Theorem 2.1.

3 Some Auxiliary Results.

In this section, we shall give some auxiliary results which used for the proof of the Theorem 2.1.

Proposition 3.1. Let \(\psi_1(\cdot) \in \mathcal{M} \) and let \(g_1(v) = v^s \psi_1(v) \), \(s > 1 \), be convex downwards on \(v \geq b \geq 1 \) with \(\lim_{v \to \infty} g_1(v) = \infty \). Then as \(n \to \infty \), we have

\[
\int_\infty^{-\infty} \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt \ dv \ dt = O(1) \psi_1(n),
\]

where

\[
\tau_1(v) = \begin{cases}
\frac{v \psi_1(1)}{\psi_1(\psi_1)}, & 0 \leq v \leq 1 \\
\frac{v^s \psi_1(v)}{\psi_1(\psi_1)}, & 1 \leq v \leq n \\
\frac{n^s}{\psi_1(v)}, & v \geq n
\end{cases}
\]

where \(O(1) \) is a quantity uniformly bounded in \(n \).
Proof. Let’s consider function \(H_n(v) \) that define the following \([0, \infty)\):

\[
H_n(v) = \begin{cases}
 v\psi_1'(n) + \psi_1(n) - n\psi_1'(n), & 0 \leq v \leq n \\
 \psi_1(v), & v \geq n
\end{cases}
\]

\(H_n(v) \) is a continuous function that is convex downwards and monotony decreasing on \([0, \infty)\). On the other hand, it coincides with function \(\tau_1(v) \) on interval \([n, \infty)\). \(\tau_1(v) \) is a positive continuous function on interval \([0, \infty)\) that is increasing on interval \([0, n]\). Meanwhile \(\tau_1'(v) \) is continuous on interval \([0, 1]\) and \([1, n]\), and let \(\lim_{v \to \infty} \tau_1(v) = \lim_{v \to \infty} \tau_1'(v) = 0 \) on interval \([n, \infty)\).

By applying two times partial integration on the integral \(\int_0^\infty \tau_1(v) \cos vt dv \), then we have

\[
\int_0^\infty \tau_1(v) \cos vt dv = -\frac{1}{t^2} \left[-\psi_1(1) + \psi_1(n) \cos nt - \psi_1'(1) \cos t \right] - \left(\int_1^n \tau_1''(v) \cos vt dv + \int_n^\infty \tau_1''(v) \cos vt dv \right). \tag{4}
\]

From (4), since \(g_1(v) \) is a convex downwards with \(\lim_{v \to \infty} g_1(v) = \infty \),

\[
\left| \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv \right| \leq \frac{2}{\pi t^2} \left(\psi_1(1) + \psi_1'(1) \right). \tag{5}
\]

Therefore, accordingly (5), we have

\[
\int_{|t| \geq \frac{n}{2n-1}} \left| \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv \right| dt = 2 \int_{\frac{n}{2n-1}}^{1/n} \left| \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv \right| dt \leq c_1 \psi_1(n). \tag{6}
\]

where \(c_1 = \frac{8}{\pi} \left(\frac{\psi_1(1) + \psi_1'(1)}{\psi_1'(1)} \right) \).

Now we will show the following asymptotic statement:

\[
2 \int_{1/n}^{1/2} \left| \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv \right| dt = O(1) \psi_1(n). \tag{7}
\]

\[
2 \int_{1/2}^{n/2n-1} \left| \frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv \right| dt = O(1) \psi_1(n). \tag{8}
\]
Let’s show the statement (7):

\[
2 \int_0^{1/n} \int_0^\infty |\tau_1(v)\cos vt| dt \leq 2 \int_0^{1/n} \int_0^1 |\tau_1(v)\cos vt| dt +
\]

\[
+ 2 \int_0^{1/n} \int_n^\infty |\tau_1(v)\cos vt| dt := I_1 + I_2
\]

Since \(g_1(v)\) is a convex downwards on \([0,n]\), we have \(|\tau_1(v)| \leq \psi_1(n)\) on interval \([0,n]\). Then for integral \(I_1\), we get

\[
I_1 \leq \frac{2}{\pi} n \psi_1(n) \frac{1}{n} = \frac{2}{\pi} \psi_1(n).
\]

(9)

For integral \(I_2\), according to function \(H_n(v)\);

\[
I_2 = 2 \int_0^{1/n} \int_0^\infty |\frac{1}{\pi} H_n(v)\cos vt| dt \leq
\]

\[
\leq 2 \int_0^{1/n} \int_0^\infty |H_n(v)\cos vt| dt + 2 \int_0^{1/n} \int_0^n |H_n(v)\cos vt| dt := I_{21} + I_{22}
\]

Firstly let’s show that \(I_{21} = O(1)\psi_1(n)\). For the simplicity we will denote

\[
I_{21} := 2 \int_0^{1/n} |I_{211}| dt
\]

where

\[
I_{211} = \frac{1}{\pi} \int_0^\infty H_n(v)\cos vt dv.
\]

By partial integration for \(I_{211}\), we have

\[
I_{211} = \frac{1}{\pi t} \int_0^\infty (-H_n'(v)\sin vt) dv
\]

Since \(H_n(v)\) is a nonincreasing and convex, \((-H_n'(v))\) is a nonnegative and nonincreasing. Thus for any \(t > 0\),

\[
\frac{1}{t} \int_0^\infty (-H_n'(v)\sin vt) dv > 0.
\]

(10)
Hence, owing to (10), we have

$$I_{21} = 2 \int_0^{1/n} |I_{211}| dt = 2 \int_0^{1/n} \frac{1}{\pi t} \int_0^\infty (-H_n'(v) \sin vt) dv dt,$$

By Fubini’s theorem, we obtain

$$I_{21} = 2 \pi \int_0^\infty (-H_n'(v)) \frac{1}{\pi t} \int_0^{1/n} \sin vt dt dv \leq H_n(0) + n|\psi_1'(n)| \leq (1 + s) \psi_1(n).$$

(11)

Secondly, let’s estimate that $I_{22} = O(1) \psi_1(n)$. Since $H_n(v)$ is a function that is monotony decreasing, then we have

$$I_{22} = 2 \int_0^{1/n} |\frac{1}{\pi} \int_0^n H_n(v) \cos vt dv| dt \leq \frac{2}{\pi} \int_0^{1/n} n \int_0^n |H_n(v)| dv dt \leq \frac{2n}{\pi} \int_0^{1/n} H_n(0) dt =$$

$$= \frac{2}{\pi} (\psi_1(n) + n|\psi_1'(n)|) \leq \frac{2(1 + s)}{\pi} \psi_1(n).$$

(12)

According to (9), (11) and (12), we get (7). Now we will show the asymptotic statement (8). By partial integration, we get

$$\frac{1}{\pi} \int_0^\infty \tau_1(v) \cos vt dv = \frac{1}{\pi t} \int_0^n \tau_1'(v) \sin vt dv + \frac{1}{\pi t} \int_n^\infty (-\tau_1'(v)) \sin vt dv := J_1 + J_2$$

Let’s show that

$$2 \int_1^{n/2n-1} |J_1| dt = O(1) \psi_1(n).$$

(13)

For this purpose, we consider the function

$$f_t(x) = \int_0^x \varphi(v) \sin vt dv, \ x > 0, \ t > 0$$

(14)

where $\varphi(v)$ is nonnegative and nondecreasing function for all $v \geq 1$.

The function \(f_t(x) \) is a continuous for every fixed \(t \). Also, on every interval between the consecutive zeros \(v_k \) and \(v_{k+1} \) of the function \(\sin vt \) the function \(f_t(x) \) has one simple zero \(x_k \), [6, chpt. IV]. Thus by assuming that \(x_k' \) is zero nearest from the left of the point \(n \), we have \(n - v_k \leq \frac{2\pi}{t} \). In view of this, by setting \(\varphi(v) = \tau'_1(v) \) on interval \([0, n]\) in (14), we find

\[
|J_1| = \frac{1}{\pi t} \int_{x_k'}^{n} \tau'_1(v) \sin vt dv.
\]

Hence since \(\tau'_1(v) \) is nondecreasing on \([0, n]\), we get

\[
2 \int_{1/n}^{n/2n-1} \frac{1}{1/n} \int \tau'_1(n - x_k') dt \leq 4\tau'_1(n) \int_{1/n}^{n/2n-1} \frac{dt}{t^2} = 4 \left(\psi_1(n) - n|\psi'_1(n)| \right) \left(n - 1 \right) \leq 4\psi_1(n) \tag{15}
\]

Therefore we get (13). Now let’s estimate that

\[
2 \int_{1/n}^{n/2n-1} \frac{1}{1/n} \int |J_2| dt = O(1)\psi_1(n). \tag{16}
\]

Similarly to (13), we consider the function,

\[
g_t(y) = \int_{y}^{\infty} \varphi(v) \sin vt dv, \quad x > 0, \quad t > 0 \tag{17}
\]

where \(\varphi(v) \) is nonnegative and nonincreasing function for all \(v \geq 1 \).

The function \(g_t(y) \) is a continuous for every fixed \(t \). Also, on every interval between the consecutive zeros \(v_k \) and \(v_{k+1} \) of the function \(\sin vt \) the function \(g_t(y) \) has one simple zero \(y_k \). Thus, by assuming that \(y_k' \) is zero nearest from the right of the point \(n \), we have \(n \leq y_k' \leq n + \frac{2\pi}{t} \). Since the function \((-\tau'_1(v)) \) is nonnegative and nonincreasing, by setting \(\psi_1(v) = -\tau'_1(v) \) in (17), we find

\[
|J_2| = \frac{1}{t} \int_{n}^{\infty} (-\tau'_1(v)) \sin vt dv \leq \frac{1}{t} \int_{n}^{n+2\pi/t} |\tau'_1(v)| dv \leq \frac{2\pi|\psi'_1(n)|}{t^2}
\]

Hence

\[
2 \int_{1/n}^{n/2n-1} |J_2| dt \leq 4|\psi'_1(n)| \int_{1/n}^{n/2n-1} \frac{dt}{t^2} \leq 4s\psi_1(n) \tag{18}
\]
Therefore we have (16). By combining (15) and (18), we get (8). According to (7) and (8), (3) is proved.

Proposition 3.2. Let $\psi_2(\cdot) \in \mathcal{W}$ and let $g_2(v) = v^s \psi_2(v)$, $s > 1$, be convex downwards on $v \geq b \geq 1$ with $\lim_{v \to \infty} g_2(v) = \infty$. Then as $n \to \infty$, we have

$$\int_{-\infty}^{\infty} \frac{1}{\pi} \int_{0}^{\infty} \tau_2(v) \sin vt dv|dt = \frac{2}{\pi n^s} \int_{1}^{n^s} \psi_2(v) dv + \frac{2}{\pi n} \int_{n^s}^{\infty} \frac{\psi_2(v)}{v} dv + O(1) \psi_2(n),$$

where

$$\tau_2(v) = \begin{cases} \frac{v \psi_2(1)}{n^s}, & 0 \leq v \leq 1 \\ \frac{v^s \psi_2(v)}{v^s}, & 1 \leq v \leq n \\ \frac{n^s}{\psi_2(v)}, & v \geq n \end{cases}$$

and $O(1)$ is a quantity uniformly bounded in n.

Proof. Since the rest of the proof of the proposition 3.2 is get similarly by proof of proposition 2 in [2], except the following integral; here we will estimate only this one for $\pi/2n \leq t \leq \pi/2$:

$$\frac{1}{t} \int_{\pi/2t}^{\pi/2t} \tau_2'(v) \cos vt dv = \frac{1}{t} \int_{0}^{\pi/2t} \tau_2'(v) \cos vt dv + \frac{1}{t} \int_{\pi/2t}^{n} \tau_2'(v) \cos vt dv dt. \quad (20)$$

In [2], we know that

$$\int_{\pi/2n}^{\pi/2} \frac{1}{t} \int_{0}^{\pi/2t} \tau_2'(v) \cos vt dv|dt = \frac{1}{n^s} \int_{1}^{n} v^{s-1} \psi_2(v) dv + O(\psi_2(n)).$$

Now by considering the second part of the (20) equality, we will proof the following asymptotic statement:

$$\int_{\pi/2n}^{\pi/2} \frac{1}{t} \int_{\pi/2t}^{n} \tau_2'(v) \cos vt dv|dt = O(\psi_2(n)). \quad (21)$$

For this aim, we consider the function

$$\phi_t(x) = \int_{\pi/2t}^{x} \varphi(v) \cos vt dv, \quad t > 0, \ x > 0 \quad (22)$$
where \(\varphi(v) \) is nonnegative and nondecreasing function for all \(v \geq 1 \). The function \(\phi_t(x) \) is a continuous function for every fixed \(t \). Also, on every interval between the consecutive zeros \(v_k \) and \(v_{k+1} \) of the function \(\cos vt \) the function \(\phi_t(x) \) has one simple zero \(x_k \). Thus let’s assume that \(x'_k \) is zero the nearest from the left of the point \(n \). In view of this, by setting \(\varphi(v) = \tau'_2(v) \) on interval \([1, n]\) in (22), we find

\[
\frac{1}{t} \int_{\pi/2}^{\pi/2t} \tau'_2(v) \cos vt \, dv = \frac{1}{t} \int_{x_k'}^{n} \tau'_2(v) \cos vt \, dv
\]

\[
\int_{\pi/2n}^{\pi/2} \int_{\pi/2t}^{\pi/2} \tau'_2(v) \cos vt \, dv \, dt \leq \int_{\pi/2n}^{\pi/2} \tau'_2(n) \frac{n - x_k}{t} \, dt \leq 4s \psi_2(n) \frac{(n-1)}{n} \leq 4s \psi_2(n).
\]

Hence we get (21). Therefore we have (19).

\(\square \)

4 Proof of the Theorem 2.1.

Proof. In [2], we know that

\[
\mathcal{E}_n(C_\infty, Z^n_s) = \int_{-\infty}^{\infty} |\hat{\tau}_n(t)| \, dt + \gamma(n) \quad s > 0
\]

(23)

where \(\gamma(n) \leq 0 \) and

\[
|\gamma(n)| = O(\int_{|t| \geq \frac{\pi}{2}} |\hat{\tau}_n(t)| \, dt)
\]

By using (23) and Proposition 3.1-3.2, we will proof the Theorem 2.1. Firstly, let us estimate \(\gamma(n) \):

\[
|\gamma(n)| \leq O(1) \int_{|t| \geq \frac{\pi}{2}} |\hat{\tau}_n(t)| \, dt \leq O(1) \int_{|t| \geq \frac{\pi}{2}} \left[\frac{1}{\pi} \int_{0}^{\infty} \tau_1(v) \cos vt \, dv \right] \, dt +
\]

\[
+ O(1) \int_{|t| \geq \frac{\pi}{2}} \left[\frac{1}{\pi} \int_{0}^{\infty} \tau_2(v) \sin vt \, dv \right] \, dt := \gamma_1 + \gamma_2.
\]

We get completely analogously to estimations of (6) that \(\gamma_1 = O(1)\psi_1(n) \) and we know that \(\gamma_2 = O(1)\psi_2(n) \) from [2], as well. For this reason, we have \(|\gamma(n)| \leq O(1)\psi(n) \). Finally, according to Proposition 3.1-3.2, we get (2). Therefore, the proof of the Theorem 2.1 is completed. \(\square \)
Proof of Corollary 2.2-2.5. By L’Hopital’s and Leibniz rules we obtain the following relations:

\[
\lim_{x \to \infty} \frac{\psi_2(v)}{v} \int_x^\infty \psi_2(v) \, dv = \lim_{x \to \infty} \frac{\psi_2(x)}{x |\psi'_2(x)|},
\]

\[
\lim_{x \to \infty} \frac{\psi_2(x)}{x^s} \frac{1}{\int_1^x v^{s-1} \psi_2(v) \, dv} = \lim_{x \to \infty} s - \frac{x |\psi'_2(x)|}{\psi_2(x)},
\]

and

\[
\lim_{x \to \infty} \frac{1}{\int_x^\infty \psi_2(v) \, dv} \frac{x^{s-1} \psi_2(v) \, dv}{\int_1^\infty \psi_2(v) \, dv} = -1 + \lim_{x \to \infty} \frac{1}{1 - \frac{x |\psi'_2(x)|}{s \psi_2(x)}}.
\]

Therefore, the proofs of the Corollary 2.2-2.5 are easily get by relations (2) and (24)-(26).

Acknowledgement. The author remembers Prof. Dr. A. I. STEPANETS and presents his appreciation to him for valuable discussions related with this work. Furthermore he is deeply indebted to Prof. Dr. F. G. ABDULLAYEV, stimulating suggestions and encouragement helped me in all the time of research for.

References

Received: April 4, 2008