On bi-Γ-Ideal in Γ-Semirings

J. P. Kaushik and Moin Khan

Department of Mathematics
Faculty of Natural Sciences
Jamia Millia Islamia (Central University)
New Delhi - 110025, India
gautam11980@yahoo.com

Abstract

The notion of Γ-semiring was introduced by M. Murali Krishna Rao [5] as a generalization of Γ-ring as well as of semiring. We have known that Γ-semirings are a generalization of semirings. In this paper the notion of bi-Γ-ideals in Γ-semirings is introduced. We show that bi-Γ-ideals in Γ-semirings are a generalization of bi-ideals in semirings and we give some properties for bi-Γ-ideals in Γ-semirings. We give two definition as follows: A Γ-semiring M is called a bi-simple Γ-semiring if M is the unique bi-Γ-ideal of M and a bi-Γ-ideal B of M is called minimal bi-Γ-ideal of M if B does not properly contain any bi-Γ-ideal of M.

Mathematics Subject Classification: 16Y30, 16Y99

Keywords: bi-Γ-ideals, Γ-semirings, bi-simple Γ-semirings, minimal bi-Γ-ideals

1 Preliminaries

Let S and $Γ$ be two additive commutative semigroups. Then S is called Γ-semiring if there exists a mapping $S \times Γ \times S \rightarrow S$ (image to be denoted by aab for $a, b \in S$ and $α \in Γ$) satisfying the following conditions.

(i) $aα(b + c) = aab + aac$

(ii) $(a + b)αc = aac + bαc$

(iii) $a(α + β)b = aαb + aβb$

(iv) $aaα(bβc) = (aab)αβc$

∀ $a, b, c \in S$ and for all $α, β \in Γ$.
Definition 1.1. A subsemigroup B of S such that $BSB \subseteq B$ is called bi-ideal of S. Both semigroups and semirings bi-ideals generalize quasi-ideals.

Example 1.2. Let N be the set of all Natural numbers. N is a commutative semigroup under usual multiplication. Let $B = 2N$ Thus $BNB = 4N \subseteq 2N = B$ hence B is a bi-ideal of N.

Definition 1.3. Let K be a nonempty subset of S, K is called a sub Γ-semiring of S if $a\gamma b \in k \quad \forall a, b \in k$ and $\gamma \in \Gamma$.

Definition 1.4. Let M be Γ-semiring A sub Γ-semiring B of M is called a bi-Γ-ideal of M if $B \Gamma M \Gamma B \subseteq B$.

Lemma 1.5. Let M be a Γ-semiring and B is a bi-Γ-ideal of M if $\cap B \neq \phi$, Then $\cap B$ is a bi-Γ-ideal of M.

Proof. Let $\cap B \neq \phi$

Let $a, b \in \cap B, m \in M$ and $\gamma, \mu \in \Gamma$ Then $a, b \in B$ since B is bi-Γ-ideal of M

$\therefore a\gamma b \in B$ and $a\gamma \mu b \in B \Gamma B \subseteq B$

Therefore $a\gamma b \in \cap B$ and $a\gamma \mu b \in \cap B$. hence $\cap B$ is bi-Γ-ideal of M. \square

Definition 1.6. Let A be a non empty subset of a Γ-semiring M then $$(A) = A \cup A\Gamma A \cup A\Gamma M \Gamma A$$

Proof. Let A be a nonempty subset of a Γ-semiring M Also let

$$B = A \cup A\Gamma A \cup A\Gamma M \Gamma A$$

$\Rightarrow A \subseteq B$

\square

We have that

$$B\Gamma B = (A \cup A\Gamma A) \cup (A\Gamma M \Gamma A) \Gamma (A \cup A\Gamma A) \cup (A\Gamma M \Gamma A) \subseteq A \cup A\Gamma A \cup A\Gamma M \Gamma A \subseteq B$$

\Rightarrow Hence B is a sub-Γ-remiring of M.

Since M is a Γ-semiring, all elements in $B \Gamma M \Gamma B = (A \cup A\Gamma A \cup A\Gamma M \Gamma A) \Gamma M \Gamma (A \cup A\Gamma A \cup A\Gamma M \Gamma A)$ are in the form of $a\gamma_1 m \mu_2$ for some $a, a_2 \in A, \mu_1 \gamma \in \Gamma$. Thus $B \Gamma M \Gamma B \subseteq A\Gamma M \Gamma A \subseteq B$. Therefore B is a bi-Γ-ideal of M.

Let C be any bi-Γ-ideal of M containing A. Since C is a sub Γ-semiring of $MA \subseteq C, A\Gamma A \subseteq C$. Since C is a bi-Γ-ideal of M and $A \subseteq CA\Gamma MA \subseteq C$. Therefore $B = A \cup A\Gamma A \cup A\Gamma M \Gamma A \subseteq C$. Hence B is the smallest bi-Γ-ideal of M containing A. Therefore $(A) = B = A \cup A\Gamma A \cup A\Gamma M \Gamma A$ as required.
Theorem 1.7. Let M be a Γ-semiring. Let B be a bi-Γ-ideal of M and A be a non empty subset of M then following are true.

(i) $B\Gamma A$ is a bi-Γ-ideal of M

(ii) $A\Gamma B$ is a bi-Γ-ideal of M.

Proof. (i) We see that $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A$ and

$$(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A$$

Since B is a bi-Γ-ideal of M.

$$(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A \subseteq B\Gamma A$$

and

$$(B\Gamma A)\Gamma M\Gamma(B\Gamma A) \subseteq (B\Gamma M\Gamma B)\Gamma A \subseteq B\Gamma A.$$

Therefore $B\Gamma A$ is a bi-Γ-ideal of M.

(ii) Similar to (i) \square

Definition 1.8 (Dulta, [2]). A Γ-semiring M is called simple if $M\Gamma M \neq \{0\}$ and M has no ideals other then 0 and M.

Definition 1.9. Let M be a Γ-semiring , M is called simple Γ-semiring if M is the Unique bi-Γ-ideal of M.

Theorem 2.0. Let M be a Γ-semiring then M is a simple Γ-semiring if $M = m\Gamma M\Gamma m$ for all $m \in M$.

Proof. Let M is a simple Γ-semiring let $m \in M$. By Theorem 1.7 (i) $m\Gamma M\Gamma M$ is a bi-Γ-ideal of M. Then $M = m\Gamma M\Gamma m$.

Let B be a bi-Γ-ideal of M. Let $b \in B$, by above we get $M = b\Gamma M\Gamma b \subseteq B\Gamma M\Gamma B \subseteq B$

Hence $M = B$.

So M is a simple Γ-semiring. \square

Theorem 2.1. Let M be a Γ-semiring and B a bi-Γ-ideal of M then B is minimal bi-Γ-ideal of M if and only if B is a simple Γ-semiring.

Proof. Let B a minimal bi-Γ-ideal of M. Let C be a bi-Γ-ideal of B. Then $CTB\Gamma C \subseteq C$. Since B is a bi-Γ-ideal of M by the Theorem 1.7(i) $CTB\Gamma C$ is a bi-Γ-ideal of M. Since B is a minimal bi-Γ-ideal of M. So $CTB\Gamma C = B$.

Hence $B = CTB\Gamma C \subseteq C$.
This implies that \(B = C \). Then \(B \) is a simple \(\Gamma \)-semiring.

Conversely let \(B \) be a simple \(\Gamma \)-semiring, let \(C \) be a bi-\(\Gamma \)-ideal of \(M \) such that \(C \subseteq B \). Then \(\text{CT}_B C \subseteq \text{CT}_M C \subseteq C \).

Therefore \(C \) is a bi-\(\Gamma \)-ideal of \(B \). Since \(B \) is a simple \(F \) semiring so \(B \) is a minimal bi-\(\Gamma \)-ideal of \(M \) as required. \(\square \)

Definition 2.2 (Dutta, [2]). Let \(M \) be a \(\Gamma \)-remiring and \(\Gamma \) be the free additive commutative semigroup generated by \(M \times \Gamma \). Then left and right operator semiring is defined.

Definition 2.3. An ideal \(P \) of a \(\Gamma \)-semiring \(M \) is Prime if for any ideals \(A, B, \subseteq M, A \Gamma B \subseteq P \) implies \(A \subseteq P \) or \(B \subseteq P \).

For a subset \(Q \subseteq R \) where \(R \) is the right operator semiring of a gamma semiring define by [6] as:

\[
Q^* = \{ a \in M \mid [\Gamma, a] = [\Gamma, \{ a \}] \subseteq Q \}
\]

and for a subset \(P \subseteq M \)

\[
P^* = \{ r \in R \mid Mr \subseteq P \}.
\]

Similarly for \(L, a \) left operator semiring we have if \(S \subseteq L \) then

\[
S^+ = \{ a \in M \mid [a, \Gamma] = [\{ a \}, \Gamma] \subseteq S \}
\]

and for a \(p \subseteq M \)

\[
P^+ = \{ \ell \in L \mid \ell m \subseteq P \}.
\]

\[\Rightarrow \] If \(P \) is an ideal of gamma semiring \(M \) then \(P^+ \) is an ideal of \(L \)

Theorem 2.4. Let \(P, Q \) and \(S \) be Prime ideals of a \(\Gamma \)-semiring \(M \), a Prime ideal at the right operator semiring \(R \) and a prime ideal at the left operator semiring \(L \) respectively. Then \(P^* \) is a prime ideal of \(R, P^+ \) is a prime ideal of \(L, Q^* \) and \(S^+ \) are Prime ideals of \(M \).

Proof. Let \(I \) and \(J \) be ideals of \(R \) such that \(IJ \subseteq P^* \) where \(P^* = \{ r \in R \mid Mr \subseteq P \} \). Since \(iJ \) is an ideal therefor \(i\Gamma M J = iR J \subseteq IJ \) and Then \(i\Gamma M J \subseteq P^* \).

Thus \(M i \Gamma M J \subseteq P \). But since \(P \) is prime this implies that \(MI \subseteq P \) or \(MJ \subseteq P \). Hence \(I \subseteq P^* \) or \(J \subseteq P^* \), which proves \(P^* \) is Prime. Similarly It can be verified that \(P^+ \) is Prime ideal of Left operator semiring of a \(\Gamma \)-semiring.

Let \(A, B \) be ideals of \(M \) such that \(A \Gamma B \subseteq Q^* \), where \(Q^* = \{ x \in M \mid [\Gamma, x] \subseteq Q \} \). Then by [6] \([\Gamma, A][\Gamma, B] = [\Gamma, A \Gamma B] \subseteq Q \), where \([\Gamma, A], [\Gamma, B] \) are ideals of \(M \). Since \(Q \) is Prime, \([\Gamma, A] \subseteq Q \) or \([\Gamma, B] \subseteq Q \),

\[\Rightarrow A \subseteq Q^* \text{ or } B \subseteq Q^* , \]

\(\Rightarrow Q^* \) is Prime

similarly It can be verified that \(S^+ \) is Prime. \(\square \)
Proposition 2.5. The intersection of an Arbitrary set of bi-Γ-ideals $B\lambda$ ($\lambda \in \Lambda$) of a Γ-semiring S is again a bi-ideal of S.

Proof. Let B be a bi-ideal of a Γ-semiring S. Thus $B\Sigma B \subseteq B$ and $B\Gamma S B = BSB \subseteq B$

Hence B is a bi-Γ-ideal of S set $B = \bigcap_{\lambda \in \Lambda} B\lambda$ clearly B is a subsemiring of S. By inclusion $B\lambda \Gamma S B\lambda \subseteq B\lambda$ and $B \subseteq B\lambda (\forall \lambda \in \Lambda)$ It follows that

$B\Gamma S B \subseteq B\lambda S B\lambda \subseteq B\lambda \forall \lambda \in \Lambda$

Consequently we have

$B\Gamma S B \subseteq B$

\[\square\]

Proposition 2.6. The intersection of a bi-Γ-ideal B of a Γ-semiring S and a subsemiring A of S is always a bi-Γ-ideal of the Γ-semiring S.

Proof. Let us Assume that $C = B \cap A$

Since A is subsemiring and $C \subseteq A$ we have

$CAC \subseteq AAA \subseteq A$

On the other hand $CAC \subseteq BAB \subseteq BSB \subseteq B$, hence $CAC \subseteq B \cap A = C$.

\[\square\]

References

Received: February 15, 2008