A Note on Three-Dimensional Lorentzian Manifolds

S. Azimpour, M. Toomanian

Faculty of Mathematical Sciences
Tabriz University, Tabriz, Iran
toomanian@tabrizu.ac.ir

Mohamad Chaichi

University of Payame-Noor of Tabriz, Iran
chaichi@pnu.ac.ir

Abstract

In this paper, we construct the necessary and sufficient condition for a three-dimensional Lorentz manifolds admitting a parallel one-dimensional degenerate plane field to be Locally homogeneous. Also Killing vector fields on Walker Lorentz manifolds are studied.

Mathematics Subject Classification: 53C30, 53C50, 53C80

Keywords: Curvature homogeneous Lorentzian manifolds, Locally homogeneous, Walker manifolds, Killing vector

1 Introduction

A pseudo- Riemannian manifold (M, g) is said to be curvature homogeneous up to order $k \in \mathbb{N}$ [11] or, equivalently, to satisfy the condition $P(k)$ if, for every pair of points p, q in M, there exists a linear isometry $\phi : T_p M \longrightarrow T_q M$ such that, for all $i = 0, \ldots, k$, we have

$$\varphi^*(\nabla^i R(q)) = \nabla^i R(p)$$

where, $\nabla^i R(p)$ is the i-th covariant derivative of the Riemannian curvature tensor at $p \in M$. For $k \equiv 0$, the manifold (M, g) is said to be curvature homogeneous. It is easily seen that a locally homogeneous pseudo-Riemannian

¹Now, Azad University, Karaj-Branch
manifold satisfies the condition $P(k)$ for every $k \in \mathbb{N}$. In [11], Singer showed that, conversely, a Riemannian manifold (M, g) is locally homogeneous if it satisfies the condition $P(k)$ for some $k > k_M$, where k_M is the so-called Singer index of (M, g). In [8] Sekigawa proved that every three-dimensional Riemannian manifold satisfying the condition $P(1)$ is locally homogeneous. In [9], it was shown that a four-dimensional Riemannian manifold which is curvature homogeneous up to order one is also locally homogeneous, improving the result in [10], where the condition $P(2)$ was considered. For Lorentzian manifolds, contrary to the Riemannian case, the condition $P(1)$ is not sufficient to characterize local homogeneity, not even in dimension three. Moreover, at every point $p \in M$ of a three-dimensional Lorentzian manifold (M, g), that is, the self-adjoint linear operator in T_pM associated to the Ricci curvature tensor, can be classified [4, 5] according to its eigenvalues and the associated eigenspaces (so-called Segre type). In particular, one can always construct a pseudo-orthonormal basis E_1, E_2, E_3 for the tangent space T_pM (with E_3 time like and E_1, E_2 space like) such that, with respect to this basis, the Ricci operator at p takes one of the following forms:

\[
\text{Segre type}{\{11,1\}}: \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \quad \text{Segre type}{\{1\cdot z\}}: \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}
\]

\[
\text{Segre type}{\{3\}}: \begin{pmatrix} b & a & -a \\ a & b & 0 \\ a & 0 & b \end{pmatrix}, \quad \text{Segre type}{\{21\}}: \begin{pmatrix} a & 0 & 0 \\ 0 & b & 1 \\ 0 & -1 & b \pm 2 \end{pmatrix}
\]

The Segre type $\{11,1\}$ (the comma is used to separate the space-like and time-like eigenvectors) denotes a diagonalizable Ricci operator. In the special case where the two space-like (resp. one space-like or time-like) eigenvectors have equal eigenvalue, we denote this by the degenerate Segre type $\{11,1\}$ (resp.$\{1(1,1)\}$), and the case of three equal eigenvalues is denoted by the Segre type $\{(11,1)\}$. A Ricci operator of Segre type $\{3\}$ has three equal eigenvalues associated to a one-dimensional eigenspace, and Segre type $\{1\cdot z\}$ denotes a Ricci operator with one real and two complex conjugate eigenvalues. Finally, Segre type $\{21\}$ Ricci operators have two eigenvalues (one of which has multiplicity two), each associated to a one-dimensional eigenspace, and the degenerate case where these two eigenvalues are equal, is denoted by $\{(21)\}$.

2 curvature homogeneous walker manifolds

Definition 2.1 A 3-dimensional Lorentzian manifold admitting a parallel one-dimensional degenerate plane has local coordinates (t, x, y) where the
Lorentzian metric tensor expresses as

\[
g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \varepsilon & 0 \\ 1 & 0 & f(t, x, y) \end{pmatrix}
\]

(2)

for some function \(f(t, x, y) \), where \(\varepsilon = \pm 1 \) and the parallel degenerate one-dimensional plane field becomes \(D = \langle \partial_t \rangle \).

It follows after a straightforward calculation that the Levi-Civita connection of any metric (2.1) is given by:

\[
\begin{align*}
\nabla_{\partial_y} \partial_t &= \frac{1}{2} f_t \partial_t \\
\nabla_{\partial_y} \partial_x &= \frac{1}{2} f_t \partial_x \\
\nabla_{\partial_y} \partial_y &= \frac{1}{2} (f f_t + f_y) \partial_t - \frac{1}{2 \varepsilon} f_x \partial_x - \frac{1}{2} f_t \partial_y,
\end{align*}
\]

(3)

where \(\partial_t, \partial_x, \partial_y \) are the coordinate vector fields \(\frac{\partial}{\partial t}, \frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \), respectively. Hence, if \((M, g) \) admits a parallel null vector field, then the associated Levi-Civita connection satisfies

\[
\begin{align*}
\nabla_{\partial_y} \partial_x &= \frac{1}{2} f_t \partial_x \\
\nabla_{\partial_y} \partial_y &= \frac{1}{2} f_y \partial_t - \frac{1}{2 \varepsilon} f_x \partial_x.
\end{align*}
\]

(4)

Let \(R \) denote the curvature tensor taken with the sign convention \(R(X, Y) = \nabla_X Y - [\nabla_X, \nabla_Y] \). Then the nonzero components of the curvature tensor of any metric (2.1) are given by

\[
\begin{align*}
R(\partial_t, \partial_y) \partial_t &= -\frac{1}{2} f_{tt} \partial_t \\
R(\partial_t, \partial_y) \partial_x &= -\frac{1}{2} f_{tx} \partial_t \\
R(\partial_t, \partial_y) \partial_x &= -\frac{1}{2} f f_{tt} \partial_t + \frac{1}{2 \varepsilon} f_{tx} \partial_x + \frac{1}{2} f_{tt} \partial_y \\
R(\partial_x, \partial_y) \partial_t &= -\frac{1}{2} f_{tx} \partial_t \\
R(\partial_x, \partial_y) \partial_x &= -\frac{1}{2} f_{xx} \partial_t \\
R(\partial_x, \partial_y) \partial_x &= -\frac{1}{2} f f_{tx} \partial_t + \frac{1}{2 \varepsilon} f_{xx} \partial_x + \frac{1}{2} f_{tx} \partial_y,
\end{align*}
\]

(5)
further, note that the existence of parallel null vector field simplifies (2.4) as follows:

\[R(\partial_x, \partial_y)\partial_x = -\frac{1}{2} f_{xx} \partial_t \]
\[R(\partial_x, \partial_y)\partial_y = \frac{1}{2\varepsilon} f_{xx} \partial_x. \]

(6)

Definition 2.2 Let Ric and Sc be the Ricci tensor and the scalar curvature of \((M, g)\), defined by \(Ric = \text{trace} \{ Z \rightarrow R(X, Z)Y \} \) and \(Sc = \text{trace} Ric\), respectively. Moreover, let \(\hat{Ric}\) be the Ricci operator defined by \(\langle \hat{Ric}(X), Y \rangle = Ric(X, Y)\).

The Ricci tensor of the metric (2.1) is

\[
Ric = \begin{pmatrix}
0 & 0 & \frac{1}{2} f_{tt} \\
0 & 0 & \frac{1}{2} f_{tx} \\
\frac{1}{2} f_{tt} & \frac{1}{2} f_{tx} & \frac{1}{2\varepsilon} (\varepsilon f_{tt} - f_{xx})
\end{pmatrix}
\]

when expressed in the local coordinate basis. Moreover, the Ricci operator \(\hat{Ric}\) takes the form

\[
\hat{Ric} = \begin{pmatrix}
\frac{1}{2} f_{tt} & \frac{1}{2} f_{tx} & -\frac{1}{2\varepsilon} f_{xx} \\
0 & 0 & \frac{1}{2\varepsilon} f_{tx} \\
0 & 0 & \frac{1}{2} f_{tt}
\end{pmatrix}
\]

hence, the Ricci operator has eigenvalues

\[\lambda_1 = 0, \quad \lambda_2 = \lambda_3 = \frac{1}{2} f_{tt}. \]

The Ricci operator of a curvature homogeneous 3-dimensional Lorentzian manifold has the same Segre type at every point \(p \in M\), and that, at least locally, there exists a pseudo-orthonormal frame field \(\{E_1, E_2, E_3\}\) such that the Ricci operator is given by one of the expressions in (1.1) where \(a, b\) and \(c\) are constants.

In [1], Bueken and Djoric showed that all three-dimensional Lorentzian manifolds whose Ricci operator has Segre type \(\{3\}\) or \(\{1z\}\) and which are curvature homogeneous up to order one, are locally homogeneous. Following [2], in this paper we make necessary and sufficient condition for 3-dimensional Lorentz manifolds admitting a parallel one-dimensional degenerate plane field which is curvature homogeneous up to order one to be locally homogeneous i.e.,

Theorem 2.3 Let \((M, g)\) be a three-dimensional Lorentzian manifold which is curvature homogeneous up to order one and admitting a parallel one-dimensional
A note on three-dimensional Lorentzian manifolds

A degenerate plane field. If the Ricci operator of \((M,g) \) has Segre type \(\{3\} \) or \(\{1zz\} \) at a point \(p \in M \), then \((M,g) \) is a locally homogenous manifold if and only if \(g \) is locally given by (2.1) where the function \(f \) is one of the following two types:

Type I: \(f \) is linear function with respect to \(t \) and \(x \), i.e.,

\[
f(t, x, y) = xR(y) + tS(y) + \xi(y),
\]

for any functions \(R(y), S(y), \xi(y) \),

or

Type II: \(f \) is quadratic function respect to \(t \), i.e,

\[
f(t, x, y) = \kappa t^2 + xR(y) + tS(y) + \xi(y),
\]

for any functions \(R(y), S(y), P(y), Q(y) \) and any constant \(\kappa \).

Proof: We know that the function \(f \) defined in the metric (1.1) is real. Then each three eigenvalue of the \(\hat{Ric} \), are real. Hence, we can follow with respect to eigenvalues, in two case:

Type I: \(\lambda_1 = \lambda_2 = \lambda_3 = 0 \), then from the case Segre type \(\{3\} \) we have three equations,

1) \(f_{tx} = 0 \)
2) \(f_{xx} = 0 \)
3) \(f_{tt} = 0 \)

from the first equation, we have,

\[
f(t, x, y) = \tilde{f}(t, y) + \hat{f}(x, y),
\]

from the second and third equations, we have

\[
\tilde{f}(t, y) = tS(y) + \xi(y), \quad \hat{f}(x, y) = xR(y) + \eta(y).
\]

Hence, \(f(t, x, y) = xR(y) + tS(y) + \xi(y) \). This completes the first case of the theorem.

Type II: \(\lambda_1 = 0, \lambda_2 = \lambda_3 = \kappa \) for any constant \(\kappa \), then from the Segre type \(\{1zz\} \) we have three equations:

1) \(f_{tx} = 0 \)
2) \(f_{xx} = 0 \)
3) \(f_{tt} = 2\kappa \)

from the first equation, we get,

\[
f(t, x, y) = \tilde{f}(t, y) + \hat{f}(x, y),
\]
from the second equation, we have
\[\hat{f}(x, y) = xR(y) + \eta(y), \]
and from the third equation we have \(\mathcal{T}_{tt} = 2\kappa \).
Then
\[\mathcal{T}(t, y) = \kappa t^2 + tS(y) + \xi(y). \]
Therefor
\[f(t, x, y) = \kappa t^2 + tS(y) + xR(y) + \xi(y). \]
This complete the second case of the theorem.

3 killing vector fields on 3-dimensional walker manifolds

Definition 3.1 Let \(M \) be a Riemannian manifold and \(X \in \mathcal{X}(M) \). For any \(p \in M \) let \(U \subset M \) be a neighborhood of \(p \). Let \(\varphi : (-\varepsilon, \varepsilon) \times U \longrightarrow M \) be a differential mapping such that for any \(q \in U \) the curve \(t \longrightarrow \varphi(t, q) \) is a trajectory of \(X \) passing through \(q \) at \(t = 0 \). \(X \) is called a Killing vector field (or an infinitesimal isometry) if, for each \(t_0 \in (-\varepsilon, \varepsilon) \), the mapping \(\varphi(t_0, \cdot) : U \subset M \longrightarrow M \) is an isometry.

Remark 3.2 \(X \) is Killing \(\Leftrightarrow \langle \nabla_Y X, Z \rangle + \langle \nabla_Z X, Y \rangle = 0 \) for all \(Y, Z \in \mathcal{X}(M) \)(the equation above is called the Killing equation) [3].

Theorem 3.3 Let \(M \) be a three dimensional lorentz manifold admitting a parallel degenerate line field, Any vector field \(X \) on \(M \) is Killing if and only if the function \(f \) in the metric (2.1) takes the form of \(f(t, x, y) = \alpha(y) + c \), for any function \(\alpha(y) \) and \(c \) constant.

Proof : Let \(\{ \partial_t, \partial_x, \partial_y \} \) to be the base of three dimensional lorentz manifold \(M \). It follows after a straightforward calculation that the only nonzero component of metric product of metric (2.1) in Killing conditions are:

\[\langle \nabla_{\partial_y} \partial_t, \partial_t \rangle = 0 \]
\[\langle \nabla_{\partial_y} \partial_x, \partial_y \rangle = 0 \]

From (2.2), we conclude that \(f_1(t, x, y) = 0 \) and \(f_x(t, x, y) = 0 \) so \(f(t, x, y) = \alpha(y) + c \), for any \(\alpha(y) \) and \(c \) constant.
References

Received: December 25, 2007