S-C-Permutably Embedded Subgroups of Finite Groups

Sheng Chen and Wenbin Guo

Department of Mathematics, Xuzhou Normal University
Xuzhou 221116, P.R. China
wbguo@xznu.edu.cn

Abstract

We call a subgroup H of a group G s-c-permutably embedded in G if for each prime $p \in \pi(H)$, every Sylow p-subgroup of H is a Sylow p-subgroup of some s-conditionally permutable subgroup of G. In this paper, we obtain some results on s-c-permutably embedded subgroups and by using these results, we determine the structures of some groups.

Mathematics Subject Classification: 20D10, 10D20

Keywords: s-c-permutably embedded subgroups, Sylow subgroup, s-conditionally permutable subgroups, supersoluble group, nilpotent group

1 Introduction

All subgroups considered in this paper are finite.

Recall that a subgroup A of a group G is permutable with a subgroup B if $AB = BA$. If A is permutable with all subgroups of G, then A is called a permutable subgroup [3] (or quasinormal subgroup) [13] of G. The permutable subgroups have many interesting properties. For example, Ore [13] proved that every permutable subgroup of a group is subnormal. Itó and Szép [12] showed that H/H_G is nilpotent for every permutable subgroup H of a group G. Kegel and Deskins [2] showed that the subgroups H of a group G which are permutable with all Sylow subgroups of G inherit a series of key properties of permutable subgroups. Recently, Guo, Shum and Skiba [8] introduce the concept of conditionally permutable subgroup. They say that a subgroup H of a group G is conditionally permutable in G if for any subgroup T of G, there exists some $x \in G$ such that $HT^x = T^xH$. Using the new idea, people have

1Research is supported by a NNSF of China (Grant #10771180) and a postgraduate innovation grant of Jiangsu Province.
obtained a series of elegant results on the structure of groups (cf [6-10]). A subgroup H of G is said to be s-conditionally permutable in G (cf. [10, 16]) if for every Sylow subgroup T of G, there exists $x \in G$ such that $HT^x = T^xH$. By Sylow theorem, we know that a subgroup H of G is s-conditionally permutable if and only if for any $p \in \pi(G)$, there exists a Sylow p-subgroup P such that $PH = HP$. As a continuation, we now introduce the following concept:

Definition 1.1 Let H be a subgroup of a group G. H is said to be s-c-permutably embedded in G if for every Sylow subgroup of H is a Sylow subgroup of some s-conditionally permutable subgroup of G.

Clearly, every s-conditionally permutable subgroup is a s-c-permutably embedded subgroup of G. However, the following examples shows that an s-c-permutably embedded subgroup is not necessarily s-conditionally permutable in G.

Example 1. Let $N \triangleleft G$. The every Sylow subgroup T of N is s-c-permutably embedded in G, but clearly T is not necessarily be an s-conditionally permutable subgroup of G if G is non-soluble.

Example 2. Let $G = S_5$ and P be a Sylow 3-subgroup of G. Then P is not an s-conditionally permutable subgroup. In fact, we know that S_5 has no a subgroup of order 15. Hence P_3 can not permute with any Sylow 5-subgroup of G. However, G is itself an s-conditionally permutated subgroup of G. Hence P_3 is an s-c-permutably embedded subgroup in G.

All unexplained notations and terminology are standard. The reader is referred to Huppert [11] or Guo [4].

2 Preliminaries

We first give some basic results on s-conditionally subgroups and s-c-permutably embedded subgroups.

Lemma 2.1 [16, Lemma 2.1] Let G be a group, $K \triangleleft G$ and $H \leq G$. Then:

1. If H is s-conditionally permutable in G, then HK/K is s-conditionally permutable in G/K.
2. If $K \leq H$ and H/K is s-conditionally permutable in G/K, then H is s-conditionally permutable in G.
3. Suppose that HK/K is s-conditionally permutable in G/K and $(|H|, |K|) = 1$. If G is soluble or K is nilpotent, then H is s-conditionally permutable in G.
4. If H is s-conditionally permutable in G, then $H \cap K$ is s-conditionally permutable in K.
Lemma 2.2 Suppose that G is a group, $K \triangleleft G$ and $H \triangleleft G$. Then:

1. If H is s-c-permutably embedded in G, then HK/K is s-c-permutably embedded in G/K.
2. If $K \leq H$ and H/K is s-c-permutably embedded in G/K, then H is s-c-permutably embedded in G.
3. If HK/K is s-c-permutably embedded in G/K and $(|H|, |K|) = 1$, then H is s-c-permutably embedded in G.
4. If H is s-c-permutably embedded in G, then $H \cap K$ is s-c-permutably embedded in K.

Proof. (1) It is obvious.

(2) Let $p \in \pi(H)$. By the hypothesis, there exists an s-conditionally permutable subgroup N/K of G/K such that every Sylow p-subgroup P/K of H/K is a Sylow p-subgroup of N/K. Hence $p \nmid |N/K : P/K|$. If $p \nmid |H/K|$, then $P = K$. In this case, every Sylow p-subgroup of H is also a Sylow p-subgroup of K. Since $K \triangleleft G$, K is clearly s-conditionally permutable in G. Therefore H is s-c-permutably embedded in G. Now, suppose that $p \mid |H/K|$. By Lemma 2.1(2), N is s-conditionally permuted in G. Let P_1 be a Sylow p-subgroup of H. We need only to prove that P_1 is also a Sylow p-subgroup of N. Obviously, $P/K = P_1K/K$ and $|N : P_1| = |N : P| |P_1K : P_1|$ is a p'-number. This means that P_1 is a Sylow p-subgroup of N. Thus H is s-c-permutably embedded in G.

(3) By (2), we can see that HK is s-c-permutably embedded in G. Let p be an arbitrary prime dividing the order of H. Then $p \mid |HK|$. By the hypothesis, there exists an s-conditionally permutable subgroup N of G such that every Sylow p-subgroup of HK is also a Sylow p-subgroup of N. Since $(|H|, |K|) = 1$, we have that every Sylow p-subgroup of H is also a Sylow p-subgroup of N. Hence, H is s-c-permutably embedded in G.

(4) Let $p \in \pi(H)$. By the hypothesis, there exists a s-conditionally permutable subgroup N of G such that every Sylow p-subgroup P of H is also a Sylow p-subgroup of N. Since $K \triangleleft G$, obviously $N \cap K$ is also s-conditionally permutable in K. We now prove that every Sylow p-subgroup of $H \cap K$ is also a Sylow p-subgroup of $N \cap K$. In fact, since $K \triangleleft G$, $P \cap K$ is a Sylow p-subgroup of $H \cap K$. By Sylow theorem, we may assume without loss of generality that $P \cap K$ is an arbitrary Sylow p-subgroup of $H \cap K$. Since $|(N \cap K) : (P \cap K)| = |(N \cap K) : (P \cap N \cap K)| \mid |P(N \cap K) : P|$, $p \nmid |(N \cap K) : (P \cap K)|$. This shows that $P \cap K$ is a Sylow p-subgroup of $N \cap K$. Hence H is s-c-permutably embedded in K.

Lemma 2.3 Let G be a group and P a subgroup of G contained in $O_p(G)$. If P is s-c-permutably embedded in G, then P is s-conditionally permutable in G.
Proof. Obviously, P is a subnormal subgroup of G. Since P is s-c-permutably embedded in G, there exists an s-conditionally permutably embeddable subgroup A of G such that P is a Sylow p-subgroup of A. Hence, for any $q \in \pi(G)$, there exists a Sylow q-subgroup G_q of G such that $AG_q = G_qA$. If $p = q$, then $P \leq G_p$ and so $PG_p = G_pP$. If $p \neq q$, then P is a subnormal Hall subgroup of $AG_q = G_qA$ and consequently P is normal in AG_q. Hence $PG_q = G_qP$. This shows that P is s-conditionally permuted in G.

Lemma 2.4 Let P be a minimal normal p-subgroup of G. If every subgroup of P with order p is s-c-permutably embedded in G, then P is a group of order p.

Proof. Suppose that E is a Sylow p-subgroup of G. Then $P \cap Z(E) \neq 1$. Let L be a subgroup of $P \cap Z(E)$ of order p. By the hypothesis, L is s-c-permutably embedded in G. Hence there exists a s-conditionally permutable subgroup N of G such that L is a Sylow p-subgroup of N. This means that for every $q \in \pi(G)$ and $p \neq q$, there exists a Sylow q-subgroup Q of G such that $NQ = QN$. Since $L = P \cap NQ \triangleleft NQ$, $NQ \subseteq N_G(L)$. On the other hand, $E \leq N_G(L)$. Thus $L \triangleleft G$. But since P is a minimal normal p-subgroup of G, we have $P = L$. Thus P is a group of order p.

For the sake of convenience, we now list some known results for the proofs in this paper.

Lemma 2.5 [8, Lemma 3.1]. Let N and L be normal subgroups of a group G. Let P/L be a Sylow p-subgroup of NL/L and M/L a maximal subgroup of P/L. If P_p is a Sylow p-subgroup of $P \cap N$, then P_p is a Sylow p-subgroup in N such that $D = M \cap N \cap P_p$ is a maximal subgroup in P_p and $M = LD$.

3 Main Results

Theorem 3.1 Let p be a prime and G a p-soluble group. If every cyclic p-subgroup of G is s-c-permutably embedded in G, then G is p-supersoluble.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. Then:

(1) If N is a proper normal subgroup of G, then G/N is p-supersoluble.

In fact, for the cyclic p-subgroup K/N of G/N, we have $K/N = \langle x \rangle N/N$, where $x \in K$. By Sylow theorem, there exists a Sylow p-subgroup G_p such that $KN/N \leq G_pN/N$ and so $K \leq G_pN$. Therefore, we may assume that $x = gn$, where $g \in G_p$, $n \in N$. Then $\langle x \rangle N = \langle g \rangle N$. By the hypothesis, $\langle g \rangle$ is s-c-permutably embedded in G. It follows from Lemma 2.2 that $K/N = \langle x \rangle N/N = \langle g \rangle N/N$ is s-c-permutably embedded in G/N. Hence G/N
S-

C-permutably embedded subgroups of finite groups

satisfies the condition of the theorem. The choice of \(G \) implies that \(G/N \) is \(p \)-supersoluble.

(2) \(\Phi(G) = 1 \) and \(G \) has a unique minimal normal subgroup \(N \) such that \(N = C_G(N) = O_p(G) \) and \(G = [N]M \), where \(M \) is a maximal subgroup of \(G \) with \(O_p(M) = 1 \).

Since the class of all \(p \)-supersoluble groups is a saturated formation, by (1), obviously, \(\Phi(G) = 1 \) and \(G \) has a minimal normal subgroup \(N \). Hence there exists a maximal subgroup \(M \) of \(G \) such that \(G = NM \). Since \(G \) is \(p \)-soluble, \(N \) is a clearly \(p \)-subgroup of \(G \) (Otherwise, \(N \) is a \(p' \) group and consequently \(G \) is \(p \)-supersoluble.) Thus \(N \) is an elementary abelian \(p \)-subgroup of \(G \). It follows that \(G = [N]M \). Let \(C = C_G(N) \). Obviously, \(C \cap M = 1 \). By the Dedekind identity, \(C = C \cap NM = N(C \cap M) = N \). This shows that \(N = O_p(G) = C_G(N) \) and \(M \cong G/N \) is a supersoluble group with \(O_p(M) = 1 \) (cf. [4, Lemma 1.7.11]).

(3) Final contradiction follows.

By Lemma 2.4, \(|N| = p \). Then by (1), \(G \) is \(p \)-supersoluble. This is a contradiction. Thus, the proof of the theorem is completed.

Corollary 3.1.1 Let \(G \) be a \(p \)-soluble group and \(p \) a prime dividing the order of \(G \). \((|G|, p - 1) = 1 \) and \(P \) is a Sylow \(p \)-subgroup of \(G \). If every maximal subgroup of \(P \) is \(s \)-\(c \)-permutably embedded in \(G \), then \(G \) is \(p \)-nilpotent.

Theorem 3.2 Let \(G \) be a soluble group. If every maximal subgroup of every non-cyclic Sylow subgroup of \(G \) having no supersoluble supplement in \(G \) is \(s \)-\(c \)-permutably embedded in \(G \), then \(G \) is supersoluble.

Proof. Suppose that the result is false and let \(G \) be a counterexample of minimal order. Then:

(1) \(G \) is not a simple group.

If \(G \) is a simple group, then \(G \) is a cyclic group of prime order and so \(G \) is supersoluble, a contradiction.

(2) For every minimal normal subgroup \(N \) of \(G \), \(G/N \) is supersoluble.

Let \(Q/N \) be a non-cyclic Sylow \(p \)-subgroup of \(G/N \) and \(K/N \) a maximal subgroup of \(Q/N \). Then there exists a Sylow \(p \)-subgroup \(P \) of \(G \) such that \(Q = PN \) and \(K = N(P \cap K) \). Clearly, \(P \cap K \) is a maximal subgroup of \(P \) and \(P \) is non-cyclic. If \(P \cap K \) possesses a supersoluble supplement \(T \) in \(G \), then \(TN/N \cong T/T \cap N \) is a supersoluble supplement to \(K/N \) in \(G/N \). If \(P \cap K \) is \(s \)-\(c \)-permutably embedded in \(G \), then by Lemma 2.2, \(K/N = N(P \cap K)/N \) is \(s \)-\(c \)-permutably embedded in \(G/N \). These shows that \(G/N \) satisfies the hypothesis of the theorem. Thus, by the choice of \(G \), we have that \(G/N \) is supersoluble.

(3) \(\Phi(G) = 1 \) and \(G \) has a unique minimal normal subgroup \(H \) such that \(H = C_G(H) = O_p(G) = F(G) \) for some prime \(p \), and \(G = [H]M \), where \(M \) is
a maximal subgroup of G with $O_p(M) = 1$. (See the proof of (2) in Theorem 3.1.)

(4) Any Sylow subgroup of G is not normal subgroup in G.

Suppose that for some $q \in \pi(G)$, G has a normal Sylow q-subgroup G_q. Then by (3) $q = p$ and $H = G_q$. Since $G = [H]M$, $|G : M| = |H|$. Assume that H_1 is a maximal subgroup of H. By the hypothesis, either H_1 possesses a supersoluble supplement T in G or H_1 is s-c-permutably embedded in G. In the first case, the choice of T implies that $T \not\subseteq G$ and so $G = [H_1]T$, which contradicts the minimality of H. In the second case, there exists an s-conditionally permutable subgroup A of G such that H is a Sylow p-subgroup of A. Let q be an arbitrary prime divisor of $|G|$ with $q \neq p$. Since A is s-conditionally permutable, there exists a Sylow q-subgroup Q of G such that $AQ = QA$. Then $H_1 = H \cap AQ \leq G$. It follows that $Q \leq N_G(H_1)$ for any $q \neq p$ and $q \in \pi(G)$. On the other hand, since $H_1 \triangleleft H = G_q$, $G_p \leq N_G(H_1)$. Hence $H_1 \triangleleft G$. But since H is a minimal normal subgroup, we have $|H| = p$. This induces that G is supersoluble, a contradiction.

(5) The number p is not the largest prime divisor of $|G|$.

Indeed, if p is the largest divisor of $|G|$, then (2) and (5) implies that $O_p(G/N) \neq 1$ which contradicts to (4).

(6) Final contradiction.

By (3), we have that $G = [H]M$. Pick some Sylow p-subgroup M_p of M and let P be a Sylow p-subgroup of G including M_p. Let P_1 be maximal subgroup of P such that $M_p \leq P_1$. Then $H_1 = H \cap P_1$ is a maximal subgroup of H. By (2), it is clear that $|H| > p$. Hence P is not cyclic. By the hypothesis, P_1 is s-c-permutably embedded in G or P_1 possesses a supersoluble supplement T in G. In the first case, there exists an s-conditionally permutable subgroup A of G such that P_1 is a Sylow p-subgroup of A. This means that for an arbitrary prime divisor q of $|G|$ with $p \neq q$, there exists a Sylow q-subgroup Q of G such that $AQ = QA$. Since $H_1 \triangleleft H$ and $H_1 = H \cap P_1 \leq H \cap A \leq H \cap AQ \leq H$, $H_1 = A \cap HQ$ or $H = H \cap AQ$. If $H = H \cap AQ$, then $H \leq AQ$ and thereby $P = P_1H \leq P_1AQ = AQ$. This implies that $P = P_1$, which is impossible. Hence we may assume that $H_1 = H \cap AQ$. Because $H \triangleleft G$, $H_1 \triangleleft AQ$. It follows that $Q \leq N_G(H_1)$. On the other hand, since $H_1 \triangleleft H$ and $H_1 \triangleleft P_1$, $H_1 \triangleleft P_1H = P$. This means that $H_1 \triangleleft G$ and so $|H| = p$, a contradiction. Now assume the second case applies. Let q be the largest prime divisor of $|T|$ and T_q a Sylow q-subgroup of T. Since T is supersoluble, $T_q \triangleleft T$ where T_q is a Sylow q-subgroup of T. Obviously, T_q is also a Sylow q-subgroup of G. Since by (3), M is supersoluble, $T_q \triangleleft M_x$ for some $x \in G$. It follows that $M_x \subseteq N_G(T_q)$. But since $M \triangleleft G$, by (3) and (4), $M_x = N_G(T_q)$ and consequently $T \subseteq M_x$. Thus $G = P_1T = P_1M$, which implies that $P = P_1$. This contradiction completes the proof.

Corollary 3.2.1 Let G be a soluble group. If every maximal subgroup of each
Sylow p-subgroup of G is s-c-permutably embedded in G. Then G is supersoluble.

Corollary 3.2.2 [10] Let G be a soluble group. If every maximal subgroup of each Sylow subgroup of G is s-conditionally permuted in G, then G is supersoluble.

Theorem 3.3 Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of all supersoluble group. A group $G \in \mathfrak{F}$ if and only if G has a soluble normal subgroup H such that $G/H \in \mathfrak{F}$ and every maximal subgroup of every Sylow subgroup of H is s-c-permutably embedded in G.

Proof. The necessary part is obvious and so we only need to prove the sufficient part. Suppose that the sufficient part is false and let G be a counterexample of minimal order, we process with our proof as follows:

1. If R is a minimal normal subgroup of G, then $G/R \in \mathfrak{F}$.

 In fact, if $R = H$, then, of course, $G/R \in \mathfrak{F}$. Now we assume that $R \neq H$. Then RH/R is a normal subgroup of G/R such that the factor group $(G/R)/(RH/R) \cong G/RH \cong (G/H)/(RH/R) \in \mathfrak{F}$. Let P/R be a Sylow p-subgroup of RH/R and let M/R be a maximal subgroup in P/R. If P_p is a Sylow p-subgroup in $P \cap H$ then by Lemma 2.5, P_p is a Sylow p-subgroup in H and $D = M \cap H \cap P_p$ is a maximal subgroup in P_p and $M = RD$. Thus, by the hypothesis, D is s-c-permutably embedded in G. It follows from Lemma 2.2 that $M/R = LR/R$ is s-c-permutably embedded in G/R. This shows that the conditions of the theorem are inherited on G/R. Hence, the choice of G, we have that $G/R \in \mathfrak{F}$.

2. G has the unique minimal normal subgroup R and $R = C_G(R) = O_p(G) = F(G) \nsubseteq p$ for some $p \in \pi(G)$ and $\Phi(G) = 1$.

 Since \mathfrak{F} is a saturate formation, by (1) we see that (2) holds clearly.

 Assume $|R| = p^\alpha$ for some natural number $\alpha > 1$. Let P be a Sylow p-subgroup of G. Since $R \nsubseteq \Phi(G)$, $R \nsubseteq \Phi(P)$. Hence, there exists a maximal subgroup P_1 of P such that $R \nsubseteq P_1$. Since $R \subseteq H$, $P_1 \cap H$ is a maximal subgroup of some Sylow p-subgroups of H. By the hypothesis, there exists an s-conditionally permutable subgroup A of G such that $P_1 \cap H$ is a Sylow p-subgroup of A. Then, for arbitrary $q \in \pi(G)$ with $p \neq q$, there exists a Sylow q-subgroup Q of G such that $AQ = QA$. Hence $R \cap P_1 = R \cap (P_1 \cap H) \subseteq R \cap AQ \subseteq AQ$ and thereby $Q \subseteq N_G(R \cap P_1)$ for any $q \neq p$. On the other hand, $R \cap P_1 \subseteq P$. This shows that $R \cap P_1 \subseteq G$. Consequently $R \cap P_1 = 1$, that is, $|R| = p$.

4. Final contradiction.

 Since \mathfrak{F} is a saturated formation containing \mathfrak{U}, \mathfrak{F} has a formation function f such that $\mathfrak{A}(p - 1) \subseteq f(p)$ for all prime p, where $\mathfrak{A}(p - 1)$ is the formation
Proof. The necessary part is clear, we only need to prove the sufficiency part.

Suppose that the assertion is false and let \(G \) be a counterexample of minimal order. Let \(P \) be a Sylow \(p \)-subgroup of \(F(H) \) for an arbitrary prime divisor \(p \) of \(|G| \). Then \(P \) char \(F(H) \triangleleft G \) and so \(P \triangleleft G \). We proceed with our proof as follows:

1. \(P \cap \Phi(G) = 1 \).
 Assume that \(R = P \cap \Phi(G) \neq 1 \). Then \((G/R)/(H/R) \in \mathfrak{F} \). Let \(F(H/R) = T/R \). Obviously \(F(H) \subseteq T \). On the other hand, since \(R \subseteq \Phi(G) \), \(T \) is nilpotent. Thus \(T \subseteq F(H) \) and so \(F(H)/R = F(H/R) \). Let \(P_1/R \) be a maximal subgroup of \(P/R \). Then \(P_1 \) is a maximal subgroup of \(P \). By the hypothesis, \(P_1 \) is \(s \)-\(c \)-permutably embedded in \(G \). It follows from Lemma 2.2 that \(P_1/R \) is \(s \)-\(c \)-permutably embedded in \(G/R \). Now let \(Q/R \) be a maximal subgroup of a Sylow \(q \)-subgroup of \(F(H)/R \), where \(q \neq p \). Then \(Q = Q_1R \), where \(Q_1 \) is a Sylow \(q \)-subgroup of \(F(G) \). By the hypothesis, \(Q_1 \) is \(s \)-\(c \)-permutably embedded in \(G \) and so \(Q/R = Q_1R/R \) is \(s \)-\(c \)-permutably embedded in \(G/R \) by Lemma 2.2. This shows that \(G/R \) satisfies the hypothesis. Thus, by the choice of \(G \), we have \(G/R \in \mathfrak{F} \). Since \(G/\Phi(G) \cong (G/R)/(\Phi(G)/R) \) and \(\mathfrak{F} \) is a saturated formation, we have that \(G \in \mathfrak{F} \), a contradiction.

2. \(P = R_1 \times R_2 \times \cdots \times R_m \), where \(R_i \) (\(i = 1, 2, \ldots, m \)) is a minimal normal subgroup of \(G \) with order \(p \).

Since \(P \triangleleft G \) and \(P \cap \Phi(G) = 1 \), it is easy to see that \(P = R_1 \times R_2 \times \cdots \times R_m \), where \(R_i \) (\(i = 1, 2, \ldots, m \)) is a minimal normal subgroup of \(G \) (cf. [4, Theorem 1.8.17]). We now prove that \(|R_i| = p \). Since \(R \not\subseteq \Phi(G) \), there exists a maximal subgroup \(M \) of \(G \) such that \(G = MR_i \) and clearly \(M \cap R_i = 1 \). Let \(M_p \) be a Sylow \(p \)-subgroup of \(M \). Then \(G_p = M_pR_i = M_pP \) is a Sylow \(p \)-subgroup of \(G \). Let \(H_1 \) be a maximal subgroup of \(G_p \) containing \(M_p \). Then \(P_1 = H_1 \cap P \) is a maximal subgroup of \(P \). By the hypothesis, \(P_1 \) is \(s \)-\(c \)-permutably embedded in \(G \). Hence, \(P_1 \) is a Sylow \(p \)-subgroup of \(N \) of \(G \) such that \(P_1 \triangleleft G \). Hence, for any \(q \in \pi(G) \) with \(p \neq q \), there exists a Sylow \(q \)-subgroup \(Q \) of \(G \) such that \(NQ = QN \). Similar to the proof of Theorem 3.3, we obtain that \(P_1 \triangleleft G \) and so \(P_1 \cap R_i \triangleleft G \). But since \(R_i \not\subseteq P_1 \) and \(R_i \) is a minimal normal subgroup of \(G \), \(P_1 \cap R_i = 1 \). Hence, \(|R_i| = |R_i : P_1 \cap R_i| = |R_i : H_1 \cap P \cap R_i| = |R_i : H_1 \cap R_i| = |R_iH_1 : H_1| = |R_i : H_1| = 1\).
\[|G_p : H_1| = |P H_1 : H_1| = |P : P_1 \cap H_1| = |P : P_1| = p. \] This shows that \(R_i \) is a cyclic group of order \(p \).

(3) Final contradiction follows.

By (2), \(F(H) = N_1 \times N_2 \times \cdots \times N_m \), where \(N_i \) \((i = 1, 2, \cdots, m)\) is a minimal normal subgroup of \(G \) of prime order. Since \(G/C_G(N_i) \) is isomorphic to a subgroup of \(Aut(N_i) \), \(G/C_G(N_i) \) is cyclic. It follows that \(G/\bigcap_{i=1}^{\infty} C_G(N_i) = G/C_G(F(H)) \in \mathfrak{U} \subseteq \mathfrak{F} \), and consequently \(G/C_H(F(H)) = G/(H \cap C_G(F(H))) \in \mathfrak{F} \). Since \(F(H) \) is abelian, \(F(H) = C_H(F(H)) \). Therefore \(G/F(H) \in \mathfrak{F} \). Then, by Theorem 3.3, we obtain that \(G \in \mathfrak{F} \). This contradiction complete the proof.

Corollary 3.4.1 Let \(G \) be a group with a soluble normal subgroup \(E \) such that \(G/E \) is supersoluble. If every maximal subgroup of every Sylow subgroup of \(F(E) \) is \(s \)-conditionally permutable in \(G \), then \(G \) is supersoluble.

Remark 3.4.1 Theorem 3.4 and corollary 3.4.1 can not necessarily hold for non-soluble groups. For example, let \(G = SL(2,5) \). Then \(F(G) \) is a cyclic group of order 2. Thus each maximal subgroup of Sylow Subgroup of \(F(G) \) is \(s \)-c-permutably embedded in \(G \). However \(G \) is not a supersoluble group.

Remark 3.4.2 Theorem 3.4 and corollary 3.4.1 are not necessarily hold if the saturated formation \(\mathfrak{F} \) does not contain the class \(\mathfrak{U} \) of all supersoluble subgroups. For example, let \(\mathfrak{F} \) be a nilpotent formation. Then the symmetric group of degree 3 is a counterexample.

References

Received: March 21, 2008