Derivations and Isomorphisms of a Non-Associative Algebra with Finitely Many Right Annihilators

Seul Hee Choi

Dept. of Mathematics, Jeonju University
Chon-ju 560-759, Korea
chois@jj.ac.kr

Abstract

We prove that the non-associative algebra $W(n, 0, 0)$ and its symmetrized algebra are simple (see [1], [2], [3]). We find all the derivations of the algebra $W(n, 0, 0)$. Thus we can prove that for $n_1 \neq n_2$, the algebras $W(n_1, 0, 0)$ and $W(n_2, 0, 0)$ are not isomorphic. Because of all the derivations of a non-associative algebra, we can find the associator of the algebra. Depending on the dimension of the right annihilator of an algebra, we define the class \mathcal{R}_{ann} of the algebras in this work.

Mathematics Subject Classification : Primary 17B40, 17B56

Keywords: simple, non-associative algebra, right identity, (right) annihilator, derivation, associator

1 Preliminaries

Let \mathbb{N} be the set of all non-negative integers and \mathbb{Z} be the set of all integers. Let \mathbb{F} be a field of characteristic zero. Let \mathbb{F}^* be the multiplicative group of non-zero elements of \mathbb{F}. Let us define the \mathbb{F}-algebra $\mathbb{F}[e^{\pm x_1}, \cdots , e^{\pm x_n}, x_1^{\pm 1}, \cdots , x_m^{\pm 1}, x_{m+1}, \cdots , x_{m+s}]$ spanned by

$$\{ e^{a_1 x_1} \cdots e^{a_n x_n} x_1^{i_1} \cdots x_m^{i_m} x_{m+1}^{i_{m+1}} \cdots x_{m+s}^{i_{m+s}} \mid a_1, \cdots , a_n, i_1, \cdots , i_m \in \mathbb{Z}, i_{m+1}, \cdots , i_{m+s} \in \mathbb{N} \}.$$ \hspace{1cm} (1)

with the obvious addition and its multiplication (see [12]). For a positive integer r, the non-associative algebra $W(n, m, m+s)[r]$ is the vector space spanned by

$$\{ f \partial_u^r | f \in \mathbb{F}[e^{\pm x_1}, \cdots , e^{\pm x_n}, x_1^{\pm 1}, \cdots , x_m^{\pm 1}, x_{m+1}, \cdots , x_{m+s}] , 1 \leq u \leq n \}.$$ \hspace{1cm} (2)
with the obvious addition and the multiplication \ast where ∂_u is the usual partial derivative on the \mathbb{F}-algebra $\mathbb{F}[^{\pm x_1}, \ldots, ^{\pm x_n}, _{x_1}, \ldots, _{x_m}, _{x_{m+1}}, \ldots, _{x_{m+s}}]$ with respect to x_u, $1 \leq u \leq \text{max}\{n, m + s\}$ in the papers (see [1], [3], [9], [10], [14]). The non-associative algebra $\mathbb{W}(n, m, m + s)_{[r]}$ is a subalgebra of the algebra in the papers (see [6-11]). Note that $\partial_u^0 = 1$, $1 \leq u \leq n$. Thus if $r = 0$, then the algebra $\mathbb{W}(n, m, m + s)_{[r]}$ is the \mathbb{F}-algebra $\mathbb{F}[^{\pm x_1}, \ldots, ^{\pm x_n}, _{x_1}, \ldots, _{x_m}, _{x_{m+1}}, \ldots, _{x_{m+s}}]$. For an element l of an algebra \mathbb{A} and an ideal I of \mathbb{A}, l is full, if the ideal contains the element l, then l is \mathbb{A}. The matrix ring $M_{m+s}(\mathbb{F})$ is imbedded in the algebra $\mathbb{W}(n, m, m + s)_{[r]}$. The matrix ring $M_n(\mathbb{F})$ is not imbedded in $\mathbb{W}(n, 0, 0)_{[r]}$. The non-associative algebra $\mathbb{W}(n, 0, 0)_{[r]}$ has neither a right nor a left multiplicative identity element. Note that the definition of a non-associative algebra in this paper is different from the definitions of the algebras in the papers (see [3], [9], [10]), because of some results in the paper. Similarly to the non-associative algebra $\mathbb{W}(n, m, m + s)_{[r]}$, we can define the non-associative algebra $\mathbb{W}(n, 0, s)_{[r]}$ spanned by $\langle e^{a_1 x_1}, \ldots, e^{a_n x_n}, _{x_1}, \ldots, _{x_{n+1}}, \ldots, _{x_{n+s}}, \partial_u | a_1, \ldots, a_n \rangle$, $\mathbb{W}(n, m, m + s)_{[r]}$ has idempotents and $\mathbb{W}(n, m, m + s)_{[r]}$ is simple. Using the commutator $[,]$ of $\mathbb{W}(n, m, m + s)_{[r]}$, we can define the antisymmetrized algebra $\mathbb{W}(n, m, m + s)_{[r],[r]}$. The Lie algebra $\mathbb{W}(n, m, m + s)_{[1],[1]}$ is the simple Lie algebra in the papers (see [9] and [13]). The algebra $\mathbb{W}(n, 0, 0)_{[r]}$ is a subalgebra of the algebra $\mathbb{W}(n, m, m + s)_{[r]}$ spanned by $\langle \prod_{r = 1}^{n} e^{a_r x_r}, \partial_u | a_1, \ldots, a_n \rangle$. The algebra $\mathbb{W}(n, 0, 0)_{[r]}$ is \mathbb{Z}^n-graded as follows:

$$\mathbb{W}(n, 0, 0)_{[r]} = \bigoplus_{(a_1, \ldots, a_n)} N(a_1, \ldots, a_n)$$

where the (a_1, \ldots, a_n)-homogeneous component $N(a_1, \ldots, a_n)$ is the vector subspace of $\mathbb{W}(n, 0, 0)_{[r]}$ spanned by $\langle \prod_{r = 1}^{n} e^{a_r x_r}, \partial_u | 1 \leq u \leq n \rangle$. Let $\mathcal{R}_{\text{ann}}(n)$ be the set of all algebra \mathbb{A} such that the dimension of all the right annihilators of \mathbb{A} is n. The class \mathcal{R}_{ann} is defined as follows:

$$\mathcal{R}_{\text{ann}} = \{\mathcal{R}_{\text{ann}}(n) | n \in \mathbb{N}\}.$$

2 Simplicities

Theorem 2.1 The algebra $\mathbb{W}(n, 0, 0)_{[r]}$ is simple.

Proof. It is easy to prove that for any ideal I of $\mathbb{W}(n, 0, 0)_{[r]}$, if I contains an element of the homogeneous component $N(0, \ldots, 0)$, then I is the algebra...
Thus it is enough to show that for every non-zero ideal I of $W(n,0,0)_{[r]}$, I contains an element in the homogeneous component $N_{(0,...,0)}$. Let I_1 be a non-zero ideal of the homogeneous component $N_{(0,...,0)}$. Let l be a non-zero element in I_1. Since every term of l in a homogeneous component, let us prove the theorem by induction on the number of homogeneous components which contain a term of l. If l is in the homogeneous component $N_{(0,...,0)}$, then there is nothing to prove. Let us assume that l is in the homogeneous component $N_{(a_1,...,a_n)}$. We can also assume that a_1 is a non-zero integer. By taking an appropriate element l_2 in the homogeneous component $N_{(-a_1,...,-a_n)}$, we have that $l_2 \ast l$ is a non-zero element in $N_{(0,...,0)}$. Thus I_1 is the algebra $W(n,0,0)_{[r]}$. By induction, we can assume that if l has terms in k homogeneous components, then I_1 is the algebra $W(n,0,0)_{[r]}$. Let us assume that l has terms in $k+1$ homogeneous components. We can find an appropriate elements l_1 and ∂^r, so that $\partial^r \ast (l_1 \ast l)$ is non-zero and it has at most k homogeneous components. By induction, I_1 is the algebra $W(n,0,0)_{[r]}$. Therefore we have proven the theorem. \qed

Theorem 2.2 The antisymmetrized algebra $W(n,0,0)_{[r]}$ of the algebra $W(n,0,0)_{[r]}$ is simple. The algebra $W(n,0,0)_{[r]}$ is self-centralizing (see [8]).

Proof. The proof of the theorem is almost the same as the proof of Theorem 2.1 and the remaining result of the proof is easy, so it is omitted. \qed

Remarks. The algebra $W(n,0,0)$ is in $\mathfrak{R}_{ann}(n)$. For any $A \in \mathfrak{R}_{ann}(n)$ and $B \in \mathfrak{R}_{ann}(m)$, if $n \neq m$, then the algebras A and B are not isomorphic. Thus their antisymmetrized algebras $A_{[r]}$ and $B_{[r]}$ are not isomorphic. \qed

3 Derivations of a non-associative algebra

For a non-associative algebra, we need the following obvious results.

Proposition 3.1 Let A be a non-associative algebra and B be the set of all associators of the algebra A. For any $l \in B$, l induces the inner derivation ad_l of A (see [14]).

Note 1. For any basis element $\prod_{u=1}^{3} e^{k_u x_u} \partial_v$ of the algebra $W(3,0,0)_{[1]}$ and $v \in \{1,2,3\}$, if we define \mathbb{F}-linear maps D_w, $1 \leq w \leq 3$, of the non-associative algebra $W(3,0,0)_{[1]}$ as follows:

$$D_w(\prod_{u=1}^{3} e^{k_u x_u} \partial_v) = d_w k_w \prod_{u=1}^{3} e^{k_u x_u} \partial_v,$$
then $D_w, 1 \leq w \leq 3$, can be linearly extended to derivations of the algebra $\overline{W(3,0,0)}_1$ with appropriate coefficients. □ □

Lemma 3.1 For any derivation D of the algebra $\overline{W(3,0,0)}_1$, we have that $D(\partial_u) = 0, 1 \leq u \leq 3$.

Proof. Let D be the derivation of the algebra $\overline{W(3,0,0)}_1$ in the lemma. Since ∂_1 annihilates itself, we have that $D(\partial_1) \ast \partial_1 + \partial_1 \ast D(\partial_1)$ is zero. This implies that

$$D(\partial_1) = s_1 e^{a_1 x_1} e^{a_2 x_2} e^{a_3 x_3} \partial_1 + s_2 e^{a_4 x_1} e^{a_5 x_2} e^{a_6 x_3} \partial_2 + s_3 e^{a_7 x_1} e^{a_8 x_2} e^{a_9 x_3} \partial_3$$

for $s_1, s_2, s_3 \in \mathbb{F}$. Since ∂_2 is in the left annihilator of ∂_1, $s_1 p_2 e^{a_2 x_2} e^{a_3 x_3} \partial_1 + s_2 q_2 e^{a_4 x_1} e^{a_5 x_2} e^{a_6 x_3} \partial_2 + s_3 r_2 e^{a_7 x_1} e^{a_8 x_2} e^{a_9 x_3} \partial_3 = 0$

This implies that $p_2 = q_2 = r_2 = 0$. Since ∂_3 is in the left annihilator of ∂_1, similarly we are able to prove that $p_3 = q_3 = r_3 = 0$. So we have that $D(\partial_1) = s_1 \partial_1 + s_2 \partial_2 + s_3 \partial_3$. Since ∂_1 is a left identity of $e^{x_1} \partial_1$, we have that

$$\partial_1 \ast D(e^{x_1} \partial_1) = -s_1 e^{x_1} \partial_1 + D(e^{x_1} \partial_1).$$

This implies that $D(e^{x_1} \partial_1)$ can be written as follows:

$$D(e^{x_1} \partial_1) = c_1 e^{a_1 x_1} e^{a_2 x_2} e^{a_3 x_3} \partial_1 + c_2 e^{a_4 x_1} e^{a_5 x_2} e^{a_6 x_3} \partial_2 + c_3 e^{a_7 x_1} e^{a_8 x_2} e^{a_9 x_3} \partial_3$$

where $c_1, \ldots, c_9 \in \mathbb{F}$. By (4) we are able to prove that $a_1 = a_4 = a_7 = 1$ and s_1 is zero. Since ∂_1 is in the left annihilators of $e^{x_2} \partial_1$, and $e^{x_3} \partial_1$, we are also able to prove that s_2 and s_3 are zeroes, i.e., $D(\partial_1)$ is zero. Similarly, we can also prove that $D(\partial_2)$ and $D(\partial_3)$ are zeroes. Therefore we have proven the lemma. □

Lemma 3.2 For any derivation D of the algebra $\overline{W(3,0,0)}_1$, $D(e^{k_i x_i} \partial_j)$ holds, where $c_i \in \mathbb{F}, 1 \leq i, j \leq 3$.

Proof. Let D be the derivation of the non-associative algebra $\overline{W(3,0,0)}_1$ in the lemma. Since ∂_1 is a left identity of $e^{x_1} \partial_1$ and by Lemma 3.1, we have that $\partial_1 \ast D(e^{x_1} \partial_1) = D(e^{x_1} \partial_1)$. Let us put $D(e^{x_1} \partial_1) = c_1 \prod_{u=1}^3 e^{a_{u+x_1}} \partial_1 + c_2 \prod_{u=1}^3 e^{a_{u+x_2}} \partial_2 + c_3 \prod_{u=1}^3 e^{a_{u+x_3}} \partial_3$ where $c_1, c_2, c_3 \in \mathbb{F}$. Since

$$c_1 a_1 \prod_{u=1}^3 e^{a_{u+x_1}} \partial_1 + c_2 a_4 \prod_{u=1}^3 e^{a_{u+x_2}} \partial_2 + c_3 a_7 \prod_{u=1}^3 e^{a_{u+x_3}} \partial_3 =$$

$$c_1 \prod_{u=1}^3 e^{a_{u+x_1}} \partial_1 + c_2 \prod_{u=1}^3 e^{a_{u+x_2}} \partial_2 + c_3 \prod_{u=1}^3 e^{a_{u+x_3}} \partial_3$$

(6)
we have that $a_1, a_4,$ and a_7 are ones. Since ∂_2 and ∂_3 are in the left annihilator of $e_{x_1}\partial_1$, we can easily prove that $a_2 = a_3 = a_5 = a_6 = a_8 = a_9 = 0$ and $D(e_{x_1}\partial_1) = \sum_{u=1}^{3} c_u e_{x_u} \partial_u$. Similarly, we can also prove the followings:

\[
D(e_{x_2}\partial_1) = \sum_{u=1}^{3} c_{3+u} e_{x_u} \partial_u \quad \text{and} \quad D(e_{x_3}\partial_1) = \sum_{u=1}^{3} c_{6+u} e_{x_u} \partial_u
\]

with appropriate coefficients. Since $e_{x_1}\partial_1$ is in the left annihilator of $e_{x_2}\partial_1$, we also have that c_2 is zero. Since $e_{x_1}\partial_1$ is in the left annihilator of $e_{x_3}\partial_1$, we are able to prove that c_3 is zero. This implies that $D(e_{x_1}\partial_1) = e_{x_1}\partial_1$. Similarly, we can prove that $D(e_{x_2}\partial_1) = c_4 e_{x_1}\partial_1$ and $D(e_{x_3}\partial_1) = c_7 e_{x_1}\partial_1$. By denoting $c_{1,1} = c_1, c_{2,1} = c_4,$ and $c_{3,1} = c_7$, we have that $D(e_{x_1}\partial_1) = c_{u,1} e_{x_u} \partial_1$ where $1 \leq u \leq 3$. Similarly, we can prove that $D(e_{x_u}\partial_j) = c_{u,v} e_{x_u} \partial_v$ where $1 \leq u,v \leq 3$. By $D(e_{x_1}\partial_1 * e_{x_1}\partial_1) = D(e_{x_1}\partial_1)$, we also have that $c_{1,1} e_{x_1}\partial_1 * e_{x_1}\partial_1 * c_{1,1} e_{x_1}\partial_1 = D(e_{x_1}\partial_1)$. This implies that $D(e_{x_1}\partial_1) = 2c_{1,1} e_{x_1}\partial_1$.

By induction on $k_1 \in \mathbb{N}$ of $e_{k_1 x_1}\partial_1$, we can prove that

\[
D(e_{k_1 x_1}\partial_1) = c_{1,1} k_1 e_{k_1 x_1}\partial_1.
\]

Similarly to (7), by induction on $k_1 \in \mathbb{Z}$ of $e_{k_1 x_1}\partial_1$, we can also prove that

\[
D(e_{k_1 x_1}\partial_1) = c_{1,1} k_1 e_{k_1 x_1}\partial_1.
\]

Since $D(e_{x_1}\partial_1 * e_{x_1}\partial_2) = D(e_{x_2}\partial_2)$, we have that $(c_{1,1} + c_{1,2}) e_{x_2}\partial_2 = 2c_{1,2} e_{x_2}\partial_2$. So we have that $c_{1,1} = c_{1,2}$. Since $D(e_{x_1}\partial_1 * e_{x_2}\partial_2) = D(e_{x_3}\partial_2)$, we have that $(c_{1,1} + c_{1,3}) e_{x_3}\partial_3 = 2c_{1,3} e_{x_3}\partial_3$. So we also have that $c_{1,1} = c_{1,3}$. This implies that $c_{1,1} = c_{1,2} = c_{1,3}$. Similarly, we can prove that $c_{2,1} = c_{2,2} = c_{2,3}$ and $c_{3,1} = c_{3,2} = c_{3,3}$. Let us denote $d_1 = c_{1,1} = c_{1,2} = c_{1,3}, d_2 = c_{2,1} = c_{2,2} = c_{2,3}$, and $d_3 = c_{3,1} = c_{3,2} = c_{3,3}$ respectively. The formula (8) becomes

\[
D(e_{k_1 x_1}\partial_1) = d_1 k_1 e_{k_1 x_1}\partial_1.
\]

Similarly, we can prove that

\[
D(e_{k_u x_u}\partial_v) = d_u k_u e_{k_u x_u}\partial_v
\]

for $c_{u,v} \in \mathbb{F}$ and $1 \leq u,v \leq 3$. Therefore we have proven the lemma. \(\square\)
Lemma 3.3 For any derivation D of the algebra \(WN_{3,0,0} \) and for a basis element \(\prod_{u=1}^{3} e^{k_u x_u} \partial_v \), \(1 \leq v \leq 3 \), in the algebra \(W(3,0,0)_{[1]} \), we have the following:

\[
D(\prod_{u=1}^{3} e^{k_u x_u} \partial_v) = \sum_{w=1}^{3} d_w k_w (\prod_{u=1}^{3} e^{k_u x_u}) \partial_v.
\]

Proof. Let D be the derivation of the algebra \(W(3,0,0)_{[1]} \) in the lemma. By Lemma 3.2, we have that

\[
D(e^{k_2 x_2} \partial_3 \ast e^{k_3 x_3} \partial_1) = k_3 D(e^{k_2 x_2} e^{k_3 x_3} \partial_1)
\]

Since the left side of (11) is \(d_2 k_2 k_3 e^{k_2 x_2} e^{k_3 x_3} \partial_1 + d_3 k_3 e^{k_2 x_2} e^{k_3 x_3} \partial_1 \), we have that

\[
D(e^{k_2 x_2} e^{k_3 x_3} \partial_1) = d_2 k_2 e^{k_2 x_2} e^{k_3 x_3} \partial_1 + d_3 k_3 e^{k_2 x_2} e^{k_3 x_3} \partial_1.
\]

Since \(D(e^{k_1 x_1} \partial_2 \ast e^{k_2 x_2} e^{k_3 x_3} \partial_1) = k_2 D(\prod_{u=1}^{3} e^{k_u x_u} \partial_1) \) holds, we can prove that

\[
D(\prod_{u=1}^{3} e^{k_u x_u} \partial_1) = \sum_{v=1}^{3} d_v k_v (\prod_{u=1}^{3} e^{k_u x_u}) \partial_1
\]

Similarly we can also prove the following cases \(D(\prod_{u=1}^{3} e^{k_u x_u} \partial_2) \) and \(D(\prod_{u=1}^{3} e^{k_u x_u} \partial_3) \) as \(D(\prod_{u=1}^{3} e^{k_u x_u} \partial_1) \). Thus we have proven the lemma. \(\square \)

Theorem 3.1 The additive group \(Der(WN_{3,0,0}) \) of all the derivations of the algebra \(WN_{3,0,0} \) is spanned by \(D_w \), \(1 \leq w \leq 3 \), which are defined in Note 1.

Proof. The proof of the lemma is straightforward by Lemmas 3.1-3.3, and Note 1. So it is omitted. \(\square \)

Proposition 3.2 If two algebras \(A_1 \) and \(A_2 \) are isomorphic, then the dimension \(Dim(Der(A_1)) \) of the algebra \(A_1 \) is equal to the dimension \(Dim(Der(A_2)) \) of the algebra \(A_2 \).

Proof. The proof of proposition is straightforward, so it is omitted. \(\square \)

Since there are non-isomorphic algebras \(A_1 \) and \(A_2 \) such that \(Dim(Der(A_1)) = Dim(Der(A_2)) \), the converse of Proposition 3.1 is not true (see [3] and [4]).

Note 2. For any basis element \(\prod_{u=1}^{n} e^{x_u} \partial_v \) of the algebra \(W(n,0,0)_{[1]} \) and for \(d_u \in \mathbb{F}, 1 \leq u \leq n \), if we define \(\mathbb{F} \)-linear map \(D_w, 1 \leq w \leq 3 \), from the algebra \(W(n,0,0)_{[1]} \) to itself as follows:

\[
D_w(\prod_{u=1}^{n} e^{k_u x_u} \partial_v) = d_w k_w (\prod_{u=1}^{n} e^{k_u x_u}) \partial_v
\]

then \(D_w \) can be linearly extended to a derivation of \(W(n,0,0)_{[1]} \). \(\square \)
Lemma 3.4 For any derivation D in $\text{Der}_{\text{non}}(\overline{W(n,0,0)}_{[1]}^{1})$ of the algebra $\overline{W(n,0,0)}_{[1]}^{1}$, $D(\partial_v), 1 \leq v \leq n$, are zeroes.

Proof. Let D be any derivation of $D \in \text{Der}_{\text{non}}(\overline{W(n,0,0)}_{[1]}^{1})$. Since ∂_i annihilates ∂_j, $1 \leq i, j \leq n$, we have that $D(\partial_1) = \sum_{u=1}^{n} r_u \partial_u$ with $r_u \in \mathbb{F}$, $1 \leq u \leq n$. Since $e^{x_1} \partial_1$ is in the right annihilator of ∂_1, we have that $\partial_1 \ast D(e^{x_2} \partial_1) = -r_2 e^{x_2} \partial_1$. This implies that r_2 is zero. Symmetrically, we can prove that $r_3 = \cdots = r_n = 0$, i.e., $D(\partial_1) = r_1 \partial_1$. Since ∂_1 is a left identity of $e^{x_1} \partial_1$, we have that

$$r_1 e^{x_1} \partial_1 + \partial_1 \ast D(e^{x_1} \partial_1) = D(e^{x_1} \partial_1)$$

(12)

Let us put $D(e^{x_1} \partial_1)$ as follows:

$$D(e^{x_1} \partial_1) = \sum_{u=1}^{n} a_u (\prod_{v=1}^{n} e^{x_v}) \partial_u$$

(13)

where $a_u \in \mathbb{F}$, $1 \leq u \leq n$. By (12) and (13), we can prove that $a_1 = 1$ and $r_1 = 0$, i.e., $D(\partial_1) = 0$. Similarly, we can also prove that $D(\partial_w) = 0$, $2 \leq w \leq n$. So we have proven the lemma. \qed

Lemma 3.5 For any $D \in \text{Der}_{\text{non}}(\overline{W(n,0,0)}_{[1]}^{1})$ and a basis element $\prod_{u=1}^{n} e^{k_u x_u} \partial_v$ of the algebra $\overline{W(n,0,0)}_{[1]}^{1}$, we have that

$$D(\prod_{u=1}^{n} e^{k_u x_u} \partial_v) = \sum_{u=1}^{n} k_u d_u (\prod_{u=1}^{n} e^{k_u x_u}) \partial_v$$

(14)

where $u, v \in \{1, 2, \ldots, n\}$ and $d_u \in \mathbb{F}$.

Proof. Let D be the derivation of $\overline{W(n,0,0)}_{[1]}^{1}$ in the lemma. By Lemma 3.3, we are able to prove (14) for $n \leq 3$ easily. These results can be naturally extended to the algebra $\overline{W(n,0,0)}_{[1]}^{1}$ for $n \geq 4$. The remaining proof of the proof of the lemma is straightforward, so it is omitted. \qed

Theorem 3.2 $\text{Der}_{\text{non}}(\overline{W(n,0,0)}_{[1]}^{1})$ of the algebra $\overline{W(n,0,0)}_{[1]}^{1}$ is generated by $D_w, 1 \leq w \leq n$, which are defined in Note 2.

Proof. Let D be any derivation of $\overline{W(n,0,0)}_{[1]}^{1}$. By Lemma 3.6, for any basis element $\prod_{u=1}^{n} e^{k_u x_u} \partial_v$ of the algebra $\overline{W(n,0,0)}_{[1]}^{1}$, (14) holds with appropriate coefficients. This implies that D is the linear sum of the derivations D_1, \ldots, D_n which are defined in Note 2. Therefore we have proven the theorem. \qed
Corollary 3.1 The dimension $\text{Dim}(\text{Der}(\overline{W(n,0,0)}_1))$ of the algebra $\overline{W(n,0,0)}_1$ is n.

Proof. Since the proof of the corollary is straightforward by Theorem 3.2, it is omitted. □

Corollary 3.2 For a derivation D_u, $1 \leq u \leq n$, of the algebra $\overline{W(n,0,0)}_1$, D_u is the inner derivation ad_{∂_u} induced by ∂_u. Furthermore the associator of the algebra $\overline{W(n,0,0)}_1$ is zero (see [14]).

Proof. The proof of the corollary is straightforward by Proposition 3.1, Note 2, and Theorem 3.2. So it is omitted. □

Corollary 3.3 If $n_1 \neq n_2$, then the algebras $\overline{W(n_1,0,0)}_1$ and $\overline{W(n_2,0,0)}_1$ are not isomorphic.

Proof. Since $n_1 \neq n_2$, the results of the corollary is straightforward by Lemma 3.4 and Theorem 3.2. □

Proposition 3.3 The algebras $\overline{W(n,0,0)}_1$ and $\overline{W(0,n,0)}_1$ (resp. $\overline{W(0,0,n)}_1$) are not isomorphic.

Proof. Since the dimension $\text{Dim}(\text{Der}(\overline{W(n,0,0)}_1))$ of the algebra $\overline{W(n,0,0)}_1$ is n and the dimension $\text{Dim}(\text{Der}(\overline{W(0,n,0)}_1))$ (resp. $\text{Dim}(\text{Der}(\overline{W(0,0,n)}_1))$) of the algebra $\overline{W(0,n,0)}_1$ (resp. $\overline{W(0,0,n)}_1$) is $n^2 + n$, by Lemma 3.4, the algebras $\overline{W(n,0,0)}_1$ and $\overline{W(0,n,0)}_1$ (resp. $\overline{W(0,0,n)}_1$) are not isomorphic. □

Proposition 3.4 For an algebra A, if A has a right (resp. left) identity, then the algebras A and $\overline{W(n,0,0)}_1$ are not isomorphic.

Proof. It is easy to prove that the algebra $\overline{W(n,0,0)}_1$ has no right (resp. left) identity, Since A has a right (resp. left) identity, the algebras A and $\overline{W(n,0,0)}_1$ are not isomorphic. Thus we have proven the proposition. □

Corollary 3.4 If the matrix ring $M_n(\mathbb{F})$ is a subalgebra of an algebra A and n is greater than 1, then the algebras A and $\overline{W(n,0,0)}_1$ are not isomorphic.

Proof. It is easy to prove that the matrix ring $M_n(\mathbb{F})$ is not a subalgebra of $\overline{W(n,0,0)}_1$. By Proposition 3.3, the the proof of the corollary is easy to prove, so it is omitted. □
References

Received: March 11, 2008