Topological Properties of the Composition of Polynomials of the Form $z(z^d + c_n)$

Ahmad Zireh

Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155 Shahrood, Iran
azireh@gmail.com

Abstract

We consider the set $D_\infty := \{(c_n) \in K^N_\delta; J_{(c_n)}$ has infinity many components$\}$. The aim of this paper is to show that D_∞ is of the second Baire category in K^N_δ.

Mathematics Subject Classification: Primary 30C10, secondary 30D05, 32H50

Keywords: connectedness, polynomial dynamics, Baire category, Julia set, Fatou set

1 Introduction

For a sequence (c_k) of complex numbers, we consider the polynomials $f_{c_k}(z) = z(z^d + c_k)$, and the sequence (F_k) of iterates $F_k := f_{c_k} \circ \cdots \circ f_1$. A polynomial $f_{c_k}(z) = z(z^d + c_k)$ has d critical points (counting with multiplicity when $c = 0$):

$$\rho_k, \omega \rho_k, \cdots, \omega^{d-1} \rho_k,$$

where $\omega = e^{2\pi i/d}$ and ρ_k is one of the solutions of $(d + 1)z^d + c_k = 0$, i.e.,

$\rho_k = \left(-\frac{c_k}{d+1}\right)^{1/d}$.

Let $C_{(c_k)} := \bigcup_{k=1}^{\infty} F_k^{-1}(\rho_{k+1})$, be the critical set of sequence (F_k) and $J_{(c_k)}$ is the Julia set, according to the classical iteration theory.

In [?] we proved the following.

Theorem The Julia set $J_{(c_n)}$ is connected if and only if $C_{(c_n)}$ is bounded.

If $c_k = c$ for all k, the Mandelbrot set M_d is defined as the set of all $c \in \mathbb{C}$ such that J_c is connected. It is well known that J_c is either connected or
totally disconnected depending on whether \(c \in M_d \) or not [?].

We consider the following sets:

\[
K_\delta^N := \overbrace{K_\delta \times \cdots \times K_\delta}^{\text{N times}}, \text{ such that } K_\delta := \{ z \in \mathbb{C}; \left| z \right| \leq \delta \} \text{ for some } \delta > 0,
\]

\[
\mathcal{D} := \{(c_n) \in K_\delta^N : \mathcal{J}_{(c_n)} \text{ is connected}\},
\]

\[
\mathcal{D}_N := \{(c_n) \in K_\delta^N : \mathcal{J}_{(c_n)} \text{ has more than N components}\},
\]

\[
\mathcal{D}_\infty := \{(c_n) \in K_\delta^N : \mathcal{J}_{(c_n)} \text{ has infinity many components}\},
\]

\[
\mathcal{I} := \{(c_n) \in K_\delta^N : \mathcal{J}_{(c_n)} \text{ is totally disconnected}\}.
\]

Obviously, we have \(\mathcal{I} \subset \mathcal{D}_\infty \subset \mathcal{D}_N \subset \mathcal{D} \).

Now, we equip \(K_\delta^N \) with the product topology, where \(K_\delta \) carries the usual topology induced from \(\mathbb{C} \). Note that \(K_\delta^N \) is a complete metric space, and a sequence \(\{(c_{mn})\}_{m=1}^\infty \) in \(K_\delta^N \) is convergent to some \((c_0^n) \in K_\delta^N \) if and only if it is pointwise convergent, that is, \(c_{mn} \to c_0^n (m \to \infty) \) for all \(n \in \mathbb{N} \).

2 Main Results

In this section we study topological properties of the sets \(\mathcal{D}, \mathcal{D}_N, \mathcal{D}_\infty \) and \(\mathcal{I} \). Here, we consider \(\gamma \) such that \(\gamma^d + \gamma \leq 1 \).

The main goal is to show that \(\mathcal{D}_\infty \) is of the second Baire category in \(K_\delta^N \). This will be done in several steps. For that purpose we recall the notion of Baire category.

Let \(X \) be a topological space. A set \(A \subset X \) is nowhere dense in \(X \) if the closure \(\overline{A} \) has empty interior, and \(A \) is of the first Baire category in \(X \) if \(A \) is a countable union of nowhere dense sets. Otherwise \(A \) is of the second Baire category. From Baire’s category theorem we know that non-empty open subsets of a complete metric space \(X \) are of the second category in \(X \).

Theorem 2.1 The set \(\mathcal{I} \) is dense in \(K_\delta^N \) provided that \(\delta > \gamma \).

Proof. Let \((c_0^n) \in K_\delta^N \). We define a sequence \(\{(c_{mn})\}_{m=1}^\infty \) in \(K_\delta^N \) by

\[
c_{mn} := \begin{cases} c_0^n & \text{for } n = 1, \ldots, m, \\ c & \text{for } n > m, \end{cases}
\]

where \(c \in K_\delta^N - M_d \). Then \((c_{mn}) \to (c_0^n) (m \to \infty) \) and \(\mathcal{J}_{(c_n)} \) is totally disconnected. Since \(\mathcal{J}_{(c_m)} = (f_{(c_0)}) \circ \cdots \circ f_{(c_1)}^{-1}(\mathcal{J}(f_c)) \) the Julia sets \(\mathcal{J}_{(c_m)} \) are also totally disconnected which means that \((c_{mn}) \in \mathcal{I} \) for all \(m \in \mathbb{N} \).

Theorem 2.2 The set \(\mathcal{D}_\infty \) has empty interior.

Proof. Let \((c_0^n) \in \mathcal{D}_\infty \). We define a sequence \(\{(c_{mn})\}_{m=1}^\infty \) in \(K_\delta^N \) by

\[
c_{mn} := \begin{cases} c_0^n & \text{for } n = 1, \ldots, m, \\ c & \text{for } n > m, \end{cases}
\]

where \(c \in K_\delta^N - M_d \). Then \((c_{mn}) \to (c_0^n) (m \to \infty) \) and \(\mathcal{J}_{(c_n)} \) is totally disconnected. Since \(\mathcal{J}_{(c_{mn})} = (f_{(c_0)}) \circ \cdots \circ f_{(c_1)}^{-1}(\mathcal{J}(f_c)) \), the Julia sets \(\mathcal{J}_{(c_m)} \) are also totally disconnected which means that \((c_{mn}) \in \mathcal{I} \) for all \(m \in \mathbb{N} \). \(\square \)
where $c \in K_\delta^N \cap \mathcal{M}_d$. Then $(c_n^m) \to (c_0^0)(m \to \infty)$ and $\mathcal{J}(f_c)$ is connected.
Since $\mathcal{J}(c_n^m) = (f_{c_n^m} \circ \cdots \circ f_{c_1^m})^{-1}(\mathcal{J}(f_c))$, the Julia sets $\mathcal{J}(c_n^m)$ have only finitely many components which means that $(c_n^m) \notin \mathcal{D}_\infty$ for all $m \in \mathbb{N}$. \hfill \Box

Theorem 2.3 The set \mathcal{D} is a dense open subset of K_δ^N provided that $\delta > \gamma$.

Proof. Let $(c_n^0) \in \mathcal{D}$. There exists $z_0 \in \mathbb{C}$ such that $F_m(z_0) = (f_{c_n^0} \circ \cdots \circ f_{c_1^0})(z_0) = \rho_{m+1} \in \mathcal{C}_{m+1}$ for some $m \in \mathbb{N}$ and $F_n(z_0) \to \infty(n \to \infty)$ which implies that $(f_{c_n^0} \circ \cdots \circ f_{c_1^0}^{-1}(\rho_{m+1})) \to \infty(n \to \infty)$. Therefore we may choose R so large and $N \in \mathbb{N}$, $N > m$ such that $|(f_{c_n^0} \circ \cdots \circ f_{c_1^0})(\rho_{m+1})| > R$. Since $(f_{c_n^0} \circ \cdots \circ f_{c_1^0})$ depends continuously on c_{m+1}, \ldots, c_N there exists a neighborhood $U = U_{m+1} \times \cdots \times U_N \subset K_\delta^{N-m}$ of $(c_{m+1}^0, \ldots, c_N^0)$ such that $|(f_{c_n^0} \circ \cdots \circ f_{c_1^0})(\rho_{m+1})| > R$ for all $(c_{m+1}, \ldots, c_N) \in U$. We set $\mathcal{U} := K_m^m \times U \times K_\delta^N$. Then \mathcal{U} is a neighborhood of (c_n^0) with respect to the product topology of K_δ^N.

In order to show that $\mathcal{U} \subset \mathcal{D}$, let $(c_n) \in \mathcal{U}$. We choose $\zeta \in \mathbb{C}$ with $(f_{c_n} \circ \cdots \circ f_{c_1})(\zeta) = \rho_{m+1}$. We have $(c_{m+1}, \ldots, c_N) \in U$ and thus $|(f_{c_n} \circ \cdots \circ f_{c_1}(\rho_{m+1})| > R$ which means that $|(f_{c_n} \circ \cdots \circ f_{c_1})(\zeta)| > R$. This implies that $|(f_{c_n} \circ \cdots \circ f_{c_1})(\zeta)| \to \infty(n \to \infty)$ and thus $(c_n) \in \mathcal{D}$.

Finally, to show that \mathcal{D} is dense in K_δ^N, let $(c_n^0) \in K_\delta^N$. We define a sequence $(c_n^m)_{m=1}^\infty$ in K_δ^N by

$$c_n^m := \begin{cases} c_n^0 & \text{for } n = 1, \ldots, m, \\ c & \text{for } n > m, \end{cases}$$

where $c \in K_\delta^N \setminus \mathcal{M}_d$. Then $(c_n^m) \to (c_0^0)(m \to \infty)$ and $\mathcal{J}(f_c)$ is disconnected. Since $\mathcal{J}(c_n^m) = (f_{c_n^m} \circ \cdots \circ f_{c_1^m})^{-1}(\mathcal{J}(f_c))$, the Julia sets $\mathcal{J}(c_n^m)$ are also disconnected which means that $(c_n^m) \notin \mathcal{D}_\infty$ for all $m \in \mathbb{N}$.

Lemma 2.4 Let $(c_n) \in K_\delta^N$, and assume that $\mathcal{J}(c_{n+1})$ has exactly p components. Then \mathcal{J}_n either has exactly $2p$ or $2p-1$ components.

Proof. Let J_1, \ldots, J_p be the components of $\mathcal{J}(c_{n+1})$, and for $j \in \{1, \ldots, p\}$ let U_j be the unbounded component of $\mathbb{C} - J_j$. We have $\mathcal{J}_n = f_{c_1}^{-1}(\mathcal{J}(c_{n+1}))$. If $c_1 \in U_j$ for all $j = 1, \ldots, p$, then $f_{c_1}^{-1}(J_j)$ has two components for all $j = 1, \ldots, p$, so that \mathcal{J}_n has $2p$ components. Now, let $c_1 \notin U_{j_0}$ for some $j_0 \in \{1, \ldots, p\}$. Since $\mathcal{J}_n = \partial \mathcal{F}_n$ the maximum modulus principle implies that all bounded components of \mathcal{F}_n are simply connected. This gives $c_1 \in U_{j_0}$ for some $j_0 \in \{1, \ldots, p\}, j \neq j_0$, thus \mathcal{J}_n has $2p-1$ components. \hfill \Box

Theorem 2.5 For $n \in \mathbb{N}$ the set \mathcal{D}_N is a dense open subset of K_δ^N provided that $\delta > \gamma$.

Proof. we set $U := \{(c_n) \in K_\delta^N; \mathcal{J}_n \text{ has at most } N \text{ components}\}$,
and we show by induction that \(U_N \) is closed. For \(N = 1 \) this follows from theorem 2.3.

We assume that \(U_N \) is closed for all \(k = 1, \ldots, N \). Let \(\{(c_n^m)\}_{m=1}^{\infty} \) be a sequence in \(U_{N+1} \) which is convergent to some \((c_0^m) \in K_\delta^N\). We have \(J_{(c_0^m)} = f_{(c_0^m)}^{-1}(J_{(c_0^{m+1})}) \). If \(p_m \in \mathbb{N} \) denote the number of components of \(J_{(c_0^{m+1})} \), then by Lemma 2.4 we have \(2p_m - 1 \leq N + 1 \), and thus \(p_m \leq N \). We first assume that \(2p_m \leq N + 1 \) for all sufficiently large \(m \). Then by induction we get \(2p_0 \leq N + 1 \). Therefore, by Lemma 2.4, \(J_{(c_0^m)} \) has at most \(N + 1 \) components which gives \((c_0^0) \in U_{N+1}\).

Now let \(2p_m - 1 = N + 1 \) for infinitely many \(m \). By passing to a subsequence we may assume that this holds for all \(m \in \mathbb{N} \). For every \(m \) there exists a component \(J_m \) of \(J_{(c_0^{m+1})} \) such that \(f_{(c_0^{m+1})}^{-1}(J_m) \) is connected and yields \((c_0^m) \in K_{(c_0^{m+1})}\).

This means that \(|(f_{(c_0^m)} \circ \cdots \circ f_{(c_0^1)})(c_0^1)| \leq R \) for all \(m, n \in \mathbb{N} \). Fixing \(n \), and letting \(m \to \infty \), we obtain \(|(f_{(c_0^m)} \circ \cdots \circ f_{(c_0^1)})(c_0^1)| \leq R \) for all \(n \in \mathbb{N} \) and thus \((c_0^0) \in K_{(c_0^m+1)}\). By induction we have \(2p_0 - 1 \leq N + 1 \). Therefore, by Lemma 2.4, \(J_{(c_0^m)} \) has at most \(N + 1 \) components which gives \((c_0^0) \in U_{N+1}\).

Finally, to show that \(D_N \) is dense in \(K_\delta^N \), let \((c_0^0) \in K_\delta^N \). We define a sequence \(\{(c_1^m)\}_{m=1}^{\infty} \) in \(K_\delta^N \) by

\[
c_1^m := \begin{cases} c_0^0 & \text{for } n = 1, \ldots, m, \\ c & \text{for } n > m, \end{cases}
\]

where \(c \in K_\delta^N - \mathcal{M}_d \). Then \((c_1^m) \to (c_0^0) (m \to \infty) \) and \(J_f(c) \) has more than \(N \) components. Since \(J_{(c_0^m)} = (f_{(c_0^m)} \circ \cdots \circ f_{(c_0^1)})(J_f(c)) \), the Julia sets \(J_{(c_0^m)} \) are also has more than \(N \) components which means that \((c_1^m) \in D_N \) for all \(m \in \mathbb{N} \).

\[\square\]

Theorem 2.6 The set \(D_\infty \) is a countable intersection of dense open subset of \(K_\delta^N \) provided that \(\delta > \gamma \). In particular, is of the second Baire category in \(K_\delta^N \) while the component \(K_\delta^N - \mathcal{D}_\infty \) is of the first Baire category in \(K_\delta^N \).

Proof. The assertion immediately follows from theorem 2.5. \(\square \)

References

Received: August 28, 2007