Elementary Results on Special Number Sequences and Representation of Binary Quadratic Forms

Nihal Bircan and Hasan Şenay

Selcuk University, Faculty of Education
Department of Mathematics
42090 Yeniyol, Meram, Konya, Turkey
nbircan@gmail.com, hsenay@selcuk.edu.tr

Abstract. In this paper some interesting results of special number sequences such as Fibonacci, Pythagorean and β—numbers are given. Elementary results of representation of numbers by binary quadratic forms and β—numbers are discovered.

Mathematics Subject Classification: 11B39, 11D09, 11D72, 11E16, 11E25

Keywords: Binary quadratic forms, Prime representation, Fibonacci numbers

1. Introduction

A homogenous polynomial $f = ax^2 + bxy + cy^2$ over \mathbb{Z} in two variables of degree 2 is called a binary quadratic form over \mathbb{Z} provided $b^2 - 4ac$ is not a square of any integer. [1]

The theory of binary quadratic forms has been in the subject of number theory from Euler. We owe the development of the theory sistematically to J. L. Lagrange, C. F. Gauss and P. L. Dirichlet. [2]

The basic problem is the representation of an integer m by the quadratic form in the integral variables x and y

$$Q(x, y) = Ax^2 + Bxy + Cy^2 = m$$

The problem is twofold. First of all, we must decide if such a representation is possible or if the diophantine equation in two unknowns

$$Q(x, y) = m$$

(1)
is solvable, and then we must find out how to characterize all solutions, i.e. how to write general \((x, y)\) satisfying \((1)\). \[3\]

2. Preliminary Notes

The following notations and definitions are used in this paper:
- \(\mathbb{Z}\) : Set of integers: \{\ldots, -2, -1, 0, 1, 2, \ldots\}
- \(\mathbb{Z}^+\) : Set of positive integers: \{1, 2, \ldots\}
- \(\mathbb{Z}^*\) : Set of non-negative integers: \{0, 1, 2, \ldots\}
- \(\mathbb{Q}\) : Set of rational numbers
- \(\mathbb{Q}^*\) : Set of non-negative rational numbers
- \(\mathbb{R}\) : Set of real numbers

Definition 1. A \(\beta\)-representation is the form \(a^2 + ab + b^2\), where \(a, b \in \mathbb{Z}^*\) and \(a \geq b\)

Definition 2. Two \(\beta\)-representations \(a^2 + ab + b^2\) and \(c^2 + cd + d^2\) are distinct if either \(a \neq c\) or \(b \neq d\)

Definition 3. An integer is a \(\beta\)-number if it has at least one \(\beta\)-representation.

Definition 4. If a \(\beta\)-number is a prime, it is a \(\beta\)-prime. \[4\]

3. Main Results

Theorem 1. All \(\beta\)-primes other than 3 are of the form \(6k + 1\). \[4\]

Proof. \(p = a^2 + ab + b^2\) be a prime. Let \(a \equiv m \pmod{6}\) \(b \equiv m \pmod{6}\) and \(a^2 + ab + b^2 \equiv z \pmod{6}\). Now, \(m^2 + mn + n^2 \equiv z \pmod{6}\) using the basic properties of congruences. For \(m = 0, 1, 2, 3, 4, 5\) and \(n = 0, 1, 2, 3, 4\), \(z\) can take only the values \(6k, 6k + 1, 6k + 3, 6k + 4\). Here \(6k + 4\) are always composite. \(6k + 3\) is composite except for \(k = 0\), i.e., when \(p = 3\). So, the only prime values \(p\) can take is \(3\) and \(6k + 1\).

Corollary 2. There is no pythagorean number which is \(\beta\)-prime.

Proof. According to the theorem 1 all \(\beta\)-primes other than 3 are of the form \(6k + 1\). Also every pythagorean numbers are divisible by 6. As a conclusion there is no pythagorean number which is \(\beta\)-number.

Corollary 3. The product of two \(\beta\)-numbers is a \(\beta\)-number.

Proof. It is convenient to prove this corollary by using the ideal theory. Let \(K = \mathbb{Q}(\sqrt{d})\) and \(R_k = \mathbb{Z}[\sqrt{d}]\). Every two classes of primitive quadratic forms arising from ideals in \(R_k\) in a given field have representatives of this type:

\[
Q_1(a, b) = x_1a^2 + xab + x_2z_0b^2 \quad x_1 > 0
\]

\[
Q_2(a, b) = x_2a^2 + xab + x_1z_0b^2 \quad x_2 > 0
\]
with \((x_1, x_2) = 1\) Since the discriminants are equal, then, it is known that these forms have the same middle coefficient; like,

\[
(4) \quad Q_1(a, b) = x_1a^2 + xab + z_1b^2 \quad x_1 > 0
\]

\[
(5) \quad Q_2(a, b) = x_2a^2 + xab + z_2b^2 \quad x_2 > 0
\]

with \((x_1, x_2) = 1\) So,

\[
x^2 - 4x_1z_1 = x^2 - 4x_2z_2 = d
\]

and \(x_1z_1 = x_2z_2\). Since \((x_1, x_2) = 1\), \(x_1\) divides \(z_2\), \(x_2\) divides \(z_1\). This can be shown as \(d = x^2 - 4x_1x_2z_0\).

We note that the forms in (2) and (3) are generated by

\[
(6) \quad \dot{I}_1 = [x_1, \lambda]
\]

\[
(7) \quad \dot{I}_2 = [x_2, \lambda]
\]

where \(\lambda = (x - \sqrt{d})/2\) so (6) and (7) will be

\[
\dot{I}_1 = [1, (1 - \sqrt{-3})/2]
\]

\[
\dot{I}_2 = [1, (1 - \sqrt{-3})/2]
\]

Here we restrict to the case \(x_1 > 0\) and \(x_2 > 0\) for any \(d\), and \(\lambda\) satisfies the equation

\[
\lambda^2 = x\lambda - x_1x_2z_0
\]

Now we note that \(\dot{I}_1\) and \(\dot{I}_2\) are aggregate of

\[
\alpha_1 = x_1a_1 + \lambda b_1 \quad \alpha_1 \in \dot{I}_1
\]

\[
\alpha_2 = x_2a_2 + \lambda b_2 \quad \alpha_2 \in \dot{I}_2
\]

respectively where \(a_i\) and \(b_i\) are arbitrary rational integers, Thus
\[\alpha_1 \alpha_2 = x_1 x_2 a_1 a_2 + x_1 \lambda a_1 b_2 + x_2 \lambda a_2 b_1 + b_1 b_2 \lambda^2 \]

\[
\alpha_1 \alpha_2 = x_1 x_2 (a_1 a_2 - z_0 b_1 b_2) + \lambda (x_1 a_1 b_2 + x_2 a_2 b_1 + x b_1 b_2)
\]

Otherwise expressed;

\[(8) \quad \alpha_1 \alpha_2 = x_1 x_2 a_3 + \lambda b_3 \]

These new variables are defined by special bilinear expressions in integral coefficients

\[(9) \quad a_3 = a_1 a_2 - z_0 b_1 b_2 \]

\[(10) \quad b_3 = x_1 a_1 b_2 + x_2 a_2 b_1 + x b_1 b_2 \]

Finally we infer from that

\[\dot{I}_1 \dot{I}_2 = [a_1 a_2, \lambda] \]

First we see that by the property of products \(\dot{I}_1 \dot{I}_2 \) contains \(x_1 x_2 \) and \(x_1 \lambda, x_2 \lambda \), hence \(\lambda \) (since \((x_1, x_2) = 1 \)) Thus \(\dot{I}_1 \dot{I}_2 \supseteq [x_1 x_2, \lambda] \). But the index of the module \([x_1 x_2, \lambda] \) in \(R_k = [1, \lambda] \) is clearly \(x_1 x_2 = N[\dot{I}_1] N[\dot{I}_2] \) which is the index of \(\dot{I}_1 \dot{I}_2 \) in \(R_k \) by the index definition. Thus since \(\dot{I}_1 \dot{I}_2 \), in \(R_k \) and its subset \([x_1 x_2, \lambda] \) have the same index in \(R_k \); they must be the same. If \(Q(\dot{I}_1 \dot{I}_2) = Q_3 \) then,

\[Q_3(a, b) = x_1 x_2 a^2 + xab + z_0 b^2 \]

Indeed in the terminology of (2) (3) and (9) (10)

\[Q_1(a_1, b_1)Q_2(a_2, b_2) = Q_3(a_3, b_3) \]

As a result the product of two \(\beta \)-numbers is a \(\beta \)-number.

Corollary 4. The product of two \(\beta \)-numbers that are also Fibonacci numbers is a \(\beta \)-number but not a Fibonacci number.

Proof. It is just proved that the product of two \(\beta \)-numbers is a \(\beta \)-number. If these \(\beta \)-numbers are Fibonacci numbers, It can be easily understand the product doesn’t satisfy \(F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n+1} (n = 0, \pm 1, \pm 2, \pm 3, ...). \)
Acknowledgement. The authors wish to acknowledge the financial support by Turkish Scientific and Technical Research Council of Turkey (TUBITAK) through project TBAG-HD/47(105T070), Also Nihal Bircan expresses her gratitude to TUBITAK EU 6th Framework Programme Tr- Access Mobility for the research grant given for a research on the subject of ‘primes represented by indefinite binary quadratic forms’ in Bogazici University (http://www.boun.edu.tr) Faculty of Arts and Sciences, Department of Mathematics for 4 months.

4. References

Received: September 1, 2006