Curves in a Projective Surface
with Prescribed Ordinary Singularities

E. Ballico

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Here we give an existence theorem for integral curves C contained in a smooth projective surface S and with as only singularities prescribed ordinary multiple points at general points of S. The proof heavily use the proof of the case $S = \mathbb{P}^2$ given by T. Mignon.

Mathematics Subject Classification: 14H50; 14H10; 14J99

Keywords: singular curve; curve in a surface; curve with prescribed singularities; ordinary multiple point

Let S be a smooth and connected projective. Fix $R, H \in \text{Pic}(S)$ such that H is ample. Here we generalize the case $S = \mathbb{P}^2$ of [3] and prove the following result.

Theorem 1. Let S be a smooth and connected projective. Fix $R, H \in \text{Pic}(S)$ such that H is ample and an integer $m \geq 2$. There is an integer η such that for all integers $d \geq \eta$, all integers $s > 0$, all integers $m_i, 1 \leq i \leq s$, with $2 \leq m_i \leq m$, then

(i) $h^2(S, I_Z \otimes R \otimes H^{\otimes d}) = 0$ and either $h^0(S, I_Z \otimes R \otimes H^{\otimes d}) = 0$ or $h^1(S, I_Z \otimes R \otimes H^{\otimes d}) = 0$ for a general union $Z = \bigcup_{i=1}^{s} m_i P_i$ of s fat points of multiplicities m_1, \ldots, m_s;
(ii) If $h^0(S, I_Z \otimes R \otimes H^{\otimes d}) > 0$, then a general $X \in |I_Z \otimes R \otimes H^{\otimes d}|$ is integral, $\text{Sing}(X) = \{P_1, \ldots, P_s\}$, and each P_i is an ordinary point with multiplicity m_i of X.

Proof of Theorem 1. Part (i) is just the 2-dimensional case of [1]. We fix an integer d_0 (depending on m, S, H, R) such that part (i) is true for the triples (m, R, H) and (m, \mathcal{O}_S, H) for all integers $d \geq d_0$.

\footnote{The author was partially supported by MIUR and GNSAGA of INdAM (Italy).}
(a) Here we will assume that \(H \) is very ample, that \(h^i(S, H^{\otimes t}) = h^i(S, R \otimes H^{\otimes t}) = 0 \) for \(i = 1, 2 \) and all \(t > 0 \) and that the following Condition (+) is satisfied:

Condition (+): For all \(A_i \in S, 1 \leq i \leq 3 \), such that \(A_i \neq A_j \) for all \(i \neq j \) and every non-zero tangent vector \(v \) of \(T_{A_i}S \) there are smooth \(D, D' \in H \) such that \(\{A_1, A_2\} \subset D, A_3 \notin D, v \subset D' \) and \(A_2 \notin D' \).

Set \(c := H^2, e = H \cdot R, v := R^2, e := \omega_S \cdot H, \) and \(e' := \omega_S \cdot R \). We will often use the additive notation for line bundles on \(S \) and on the blowing-ups of \(S \). We have \(\chi(O_S(R + th)) = (v + ct^2 + 2te - et' + e'/2 + \chi(O_S) \) and \(\chi(O_S(tH)) = (ct^2 - et')/2 + \chi(O_S) \) for all \(t \in \mathbb{Z} \). If \(C \in [tH] \), then \(p_a(C) = 1 + (t^2c + et)/2 \). If \(A \in [R + th] \), then \(p_a(A) = 1 + (v + ct^2 + 2te + et')/2 \). Let \(\pi_r : S_r \to S \) denote the blowing-up of \(S \) at \(r \) distinct points \(Q_1, \ldots, Q_r \). Let \(E_i := \pi_r^{-1}(Q_i) \) be the exceptional divisors. For all \((r + 1) \)-plies of integers \(d = (d, d_1, \ldots, d_r) \) set \((d) := \pi_r^*(dH)(-d_1E_1 - \cdots - d_rE_r) \in \text{Pic}(S_r) \) and \((R + d) := \pi_r^*(R + dH)(-d_1E_1 - \cdots - d_rE_r) \in \text{Pic}(S_r) \). Fix \(d = (d, d_1, \ldots, d_r) \) and \(a = (a, a_1, \ldots, a_r) \). We have \((d) \cdot (a) = cad - \sum_{i=1}^r a_i d_i \) and \((R + d) \cdot (R + a) = ea + cad - \sum_{i=1}^r a_i d_i \). Set \(\chi(d) := \chi(O_S, d) = (cd^2 - cd)/2 + \chi(O_S) - \sum_{i=1}^r d_i(d_i + 1)/2 \) and \(\chi(R + d) := \chi(R + O_S, d) = (cd^2 - cd + 2ed + v + e')/2 + \chi(O_S) - \sum_{i=1}^r d_i(d_i + 1)/2 \). Set \(g(d) := (cd^2 + ed)/2 + \chi(O_S) - \sum_{i=1}^r d_i(d_i + 1)/2 \) and \(g(R + d) := (cd^2 + 2ed + v + ed + e')/2 + \chi(O_S) - \sum_{i=1}^r d_i(d_i + 1)/2 \). If \(C \in [(a)] \), then \(p_a(C) = 1 + (a^2c + ea)/2 - \sum_{i=1}^r a_i(a_i - 1)/2 \). \(\chi(O_C(d) = -(a^2c + ea)/2 + \sum_{i=1}^r a_i(a_i - 1)/2 + cad - \sum_{i=1}^r a_i a_i d_i \) and \(\chi(R + O_C(d) = -(a^2c + ea)/2 + \sum_{i=1}^r a_i(a_i - 1)/2 + cad - \sum_{i=1}^r a_i a_i d_i + ea \). We copy [3], Lemma 2.1, given in [2] does not use the assumption \(S = P^2 \). In our set-up \(g(a) := 1 + (a^2c + ea)/2 - \sum_{i=1}^r a_i(a_i - 1)/2 \) and we use \(\chi(O_C(d) \) instead of \(da + 1 - g \) in the numerical computation in [3], p. 291. We use \(R + d \) (resp. \(R + d - a \), resp. \(a \)) instead of the line bundles \(d \) (resp. \(d - a \), resp. \(a \)) used in [3]. Notice that \(h^i(C, \mathcal{O}_C(d)) = 0 \) when \(d \gg a \).

The computations in [3], pp. 291–295, and the check of the assumptions 2) and 3) of [2], Lemma 3.1, are OK because they require only the quadratic part of the Riemann-Roch formula for \(\chi(R + d) \). \(\chi(R + d - a) \) and \(\chi(a) \). Similar numerical problems were checked in arbitrary dimension in [1]. Condition (+) is used to copy the proof of [3], Prop. 4.1, using a smooth curve \(L \in |H| \) instead of a line.

(b) For every very ample \(L \in \text{Pic}(S) \) and every integer \(t \geq 2 \) the line bundle \(L^{\otimes t} \) is very ample and satisfies Condition (+). Take \(H \) ample. There is an integer \(x > 0 \) such that \(H^{\otimes x} \) is very ample, satisfies Condition (+) and \(h^i(S, H^{\otimes t}) = h^i(S, R \otimes H^{\otimes t}) = 0 \) for \(i = 1, 2 \) and all \(t \geq x + 1 \). We may apply the previous proof taking \(\tilde{H} := H^{\otimes x} \) with respect to the \(x \) line bundles \(R \otimes H^{\otimes t}, 0 \leq i \leq x - 1 \). \(\square \)

We work over an algebraically closed field \(K \) with \(\text{char}(K) = 0 \).
Multiple points

REFERENCES

Received: November 17, 2006