On the Degree of Theta Pairs
of Finite Groups1

A. Erfanian and R. Rezaei

Department of Mathematics
Faculty of Mathematical Sciences
Ferdowsi University of Mashhad, Mashhad, Iran
erfanian@math.um.ac.ir, ras_rezaei@yahoo.com

Abstract

Let G be a finite group and M a maximal subgroup of G. A θ-pair of M is any pair of subgroups (C, D) of G such that (i) $D < G$, $D < C$, (ii) $< M, C > = G$, $< M, D > = M$ and (iii) $\frac{G}{D}$ has no proper normal subgroup of $\frac{C}{D}$. A θ^*-pair of M is a pair of subgroups (C, D) satisfying conditions (i) and (iii) and a property that $D \leq M$ and $C^g \not\subseteq M$ for every $g \in G$.

In this paper, we introduce the degree of θ-pairs, denoted by $d\theta(G)$ as the ratio $|\theta(G)|/m(G)$, where $\theta(G)$ is the union of all θ-pairs of the maximal subgroups of G and $m(G)$ is the total number of distinct maximal subgroups of G. Similarly, we define the degrees of maximal θ-pairs, θ^*-pairs and maximal θ^*-pairs of a finite group G and give some evaluations on the above degrees for some simple groups, nilpotent groups and solvable groups. Moreover, we prove that if G is nilpotent then the degree of maximal θ-pairs of G is exactly 1.

\textbf{Keywords:} θ-pair, θ^*-pair, maximal θ-pair, maximal θ^*-pair, degree of θ-pair, degree of θ^*-pair

\textbf{Mathematics Subject Classification:} 20D10, 20E34.

1 Introduction

In 1990, Mukhrejee and Bhattacharya [4] introduced the notion of θ-pair for every maximal subgroup of a finite group. They have proved the existence of

1The authors thank the Centre of Excellency in Analysis on Algebraic Structures, Ferdowsi University of Mashhad for supporting the part grant on this work.
a \(\theta \)-pair for any maximal subgroup \(M \) of a finite group \(G \). Two years later, Beidleman and Smith [2], generalized the concept of \(\theta \)-pair for infinite groups. In [8], Yaoqing improved the definition of \(\theta \)-pair for a maximal subgroup of a finite group \(G \) to a maximal \(\theta \)-pair and normal \(\theta \)-pair. He proved that for any maximal subgroup \(M \) of a finite group \(G \), there exists a normal maximal \(\theta \)-pair related to \(M \). The investigation on \(\theta \)-pairs are continued by others in [1, 7-9]. Most of this research deals with the structure of finite groups. Later, in 2000, Shirong and Yaoqing in [6], defined the new concept \(\theta^* \)-pair which is a special case of \(\theta \)-pairs by some additional conditions. Using the concept of \(\theta^* \)-pair, they obtained several results on maximal \(\theta^* \)-pairs which imply a finite group \(G \) to be solvable or supersolvable.

In this paper, we introduced a degree on the \(\theta \)-pairs of a finite group \(G \) which is called \(\theta \)-pairs degree of \(G \) and will be stated later. In this article, we prove that if \(G \) is a finite nilpotent group, then the \(\theta \)-pairs and \(\theta^* \)-pairs degrees are exactly 1. Moreover, we will compare the above degrees of a group \(G \) with the quotient group \({\frac{G}{N}} \), where \(N \) is a normal subgroup of \(G \) and contained in the Frattini subgroup \(\Phi(G) \). Now we give some definitions and basic results.

2 Some definitions and basic results

All groups considered in this paper, are assumed to be finite. We also denote \(M_{\text{max}} \leq G \) as a convenience that \(M \) is a maximal subgroup of \(G \). Now, we start with the definition of \(\theta \)-pair given by Mukhrejee and Bhattocharya in [4].

Definition 2.1 Let \(G \) be a finite group and \(M \) a maximal subgroup of \(G \). A \(\theta \)-pair of \(M \) is any pair \((C, D) \) of subgroups satisfying the following conditions:

(a) \(D \triangleleft G \), \(D < C \).
(b) \(< M, C > = G \) and \(< M, D > = M \).
(c) \(\frac{C}{D} \) has no proper normal subgroup of \(\frac{G}{D} \).

Definition 2.2 Let \((C, D) \) be a \(\theta \)-pair of a maximal subgroup \(M \) of \(G \). Then \((C, D) \) is called a normal \(\theta \)-pair if \(C \triangleleft G \) and is said to be a maximal \(\theta \)-pair if there is no \(\theta \)-pair \((C', D') \) such that \(C < C' \).

The set of all \(\theta \)-pairs of a maximal subgroup \(M \) of \(G \) is denoted by \(\theta(M) \). We also denote \(\theta(G) \) as the union of \(\theta(M) \) for all maximal subgroups \(M \) of \(G \). Similarly, \(\theta_m(M) \) and \(\theta_m(G) \) will be denoted for those of \(\theta \)-pairs which are maximal.

It is clear that for every maximal subgroup \(M \) of \(G \), \(\theta(M) \) and \(\theta_m(M) \) are not empty. Since \((C, M_G) \) is a \(\theta \)-pair of \(M \), where \(M_G \) is the core of \(M \) in \(G \) and \(C \) is a subgroup of \(G \) such that \(\frac{C}{M_G} \) is a chief factor of \(G \). It is easy to see that \((C, M_G) \) is a maximal \(\theta \)-pair of \(M \) as well.
Definition 2.3 given a maximal subgroup M of a finite group G, a θ^*-pair of M is any pair (C, D) of subgroup of G such that
(a) $D < C$ and $D \leq G$,
(b) $D \leq M$ but $C^g \not\subseteq M$ for every $g \in G$ and
(c) $\frac{C}{D}$ has no proper normal subgroup of $\frac{G}{D}$.

Similar to those of θ-pairs, we can define the concepts : normal, maximal θ^*-pair and the notations $\theta^*(M)$, $\theta^*_m(M)$ and $\theta^*(G)$.

By the above two definitions, we can see that every θ^*-pair of M is a θ-pair of M and so $\theta^*(M) \subseteq \theta(M)$. Thus, we have $\theta^*(G) \subseteq \theta(G)$. It is also clear that a normal θ^*-pair is certainly maximal and θ^*-pair$(M^g)=\theta^*$-pair(M) for every maximal subgroup M of G and every $g \in G$.

In the rest of this section, we state some known results on the θ-pairs and θ^*-pairs. We omitt the proofs and one may find them in [4].

Theorem 2.4 If (C, D) is a maximal θ-pair in $\theta(M)$ and $N < G$, $N < D$, then $(\frac{C}{N}, \frac{D}{N})$ is a maximal θ-pair in $\theta(\frac{M}{N})$. Conversely, if $(\frac{C}{N}, \frac{D}{N})$ is a maximal θ-pair in $\theta(\frac{M}{N})$, then (C, D) is a maximal θ-pair in $\theta(M)$.

Theorem 2.5 Let G be a finite group. Then G is nilpotent if and only if $\theta(M)$, for every $M \leq G$, contains a maximal pair (C, D) such that $\frac{G}{D}$ is nilpotent.

Theorem 2.6 A solvable group G is nilpotent if and only if for all $M \leq G$, $\theta(M)$ contains exactly one maximal pair.

There are some similar results on θ^*-pair that we referred to [5] and [6].

3 Degree of θ-pairs and θ^*-pairs

In this section, we introduce a concept of degree for θ-pairs and θ^*-pairs of a finite group G. We state the following definition.

Definition 3.1 Let G be a finite group and $m(G)$ be the total number of distinct maximal subgroup of G. Then, $d\theta(G)$ is said to be the degree of θ-pairs of G and is

$$d\theta(G) = \frac{|\theta(G)|}{m(G)}.$$

Similarly, the degree of θ^*-pair of G is denoted by

$$d\theta^*(G) = \frac{|\theta^*(G)|}{m(G)}.$$
We may also define the above degree for maximal θ-pairs and θ^*-pairs of G. We denote them by $d\theta_m(G)$ and $d\theta_m^*(G)$, respectively. In the following lemma we compare the above degrees.

Lemma 3.2 Let G be a finite group G. then

(i) $d\theta_m(G) \leq d\theta(G)$;
(ii) $d\theta_m^*(G) \leq d\theta^*(G)$;
(iii) $d\theta_m^*(G) \leq d\theta_m(G)$.

Proof It is clear by definitions 2.2 and 2.3.

Lemma 3.3 Let G be a finite non-abelian simple group. Then $|\theta_m(G)| = 1$.

Proof It is clear that $(G, 1)$ is a θ-pair for every maximal subgroup M of G. So we have to show that $(G, 1)$ is a unique maximal θ-pair. If (C, D) is a θ-pair of a maximal subgroup of G, then there are two possibilities for D. If $D = G$, then by condition (b) of Definition 2.1, we should have $<M, D> = M$ which is a contradiction. Thus, D must be the identity subgroup. So, $(C, D) = (C, 1)$ and therefore

$$\theta(M) = \{(C, 1) : <C, M> = G \text{ and } C \text{ has no proper normal subgroup of } G\}.$$

Since $(G, 1) \in \theta(M)$ and is the maximal element of $\theta(M)$, we have $\theta_m(G) = \{(G, 1)\}$ and the proof is completed.

Lemma 3.4 Let G be a finite non-abelian simple group. Then $m(G) > 1$.

Proof Assume that $m(G) = 1$ and M is a unique maximal subgroup of G. Then we should have $M^g = M$ for every $g \in G$ and so $M < G$. If $M = 1$, then G is a cyclic group of prime order which is a contradiction. Hence $M \neq 1$ and it implies that $m(G) > 1$.

Theorem 3.5 Let G be a finite non-abelian simple group. Then

$$d\theta_m(G) = d\theta_m^*(G) = \frac{1}{m(G)} < 1.$$

Proof By lemmas 3.2 and 3.3, the proof is clear.

The degree of θ-pairs or θ^*-pairs may have the values equal or bigger than 1. The following example proves this fact.

Example 3.6

(i) Let $G = S_3$, then we have 4 maximal subgroups

$M_1 = <(12)>, M_2 = <(13)>, M_3 = <(23)>.$
and $M_4 = A_3$. We can easily see that

$$\theta(G) = \theta^*(G) = \theta_m(G) = \theta^*_m(G) = \{(G, A_3), (A_3, 1), (M_1, 1), (M_2, 1), (M_3, 1)\}.$$

Thus

$$d\theta(G) = d\theta^*(G) = d\theta_m(G) = d\theta^*_m(G) = \frac{5}{4} > 1.$$

(ii) Let $G = \mathbb{Z}_3$, then by the similar method as the previous example we can find that $d\theta_m(G) = d\theta^*_m(G) = 1$.

Theorem 3.7 Let G be a cyclic group of prime order. Then

$$d\theta(G) = d\theta^*(G) = d\theta_m(G) = d\theta^*_m(G) = 1$$

Proof It is clear that the only proper subgroup of G is the identity subgroup. Thus $m(G) = 1$ and if $M = 1$ is a maximal subgroup of G, then $(G, 1)$ is the only θ-pair and, of course is a θ^*-pair and maximal. Therefore $\theta(M) = \theta_m(M) = \theta^*_m(M) = \{(G, 1)\}$ and it completes the proof.

The following theorem is a comparison of the maximal θ-pair degree of group G and quotient group G/N.

Theorem 3.8 Let G be a nilpotent group and N be a normal subgroup of G such that $N \subseteq \Phi(G)$. Then $d\theta_m(G) = d\theta_m(G/N)$.

Proof First, we prove that $m(G) = m(G/N)$. If M is a maximal subgroup of G, then M/N is a maximal subgroup of G/N, because if there exists a subgroup M of G such that $M/N \nsubseteq H \nsubseteq G$, then $M \nsubseteq H \nsubseteq G$ which is a contradiction. Thus M/N is a maximal subgroup of G/N. Conversely, if M/N is a maximal subgroup of G/N, then by the similar method, M is a maximal subgroup of G. Therefore, we have $m(G) = m(G/N)$. Now, assume that M is a maximal subgroup of G. Then $M \lhd G$ and so (G, M) is a θ-pair of M in G, because G/N is simple. We can also see that (G, M) is a maximal θ-pair of M. Since, if (C, D) is another maximal θ-pair of M, then $C = G$ and so (G, D) is a normal maximal θ-pair. Hence, by (Theorem 2.3, [5]), $D = M_G$ and therefore $(C, D) = (G, M)$. It implies that $\theta_m(M) = \{(G, M)\}$. Now, assume that $m(G) = k$ and M_1, M_2, \ldots, M_k are distinct maximal subgroups of G, then

$$\theta_m(G) = \{(G, M_1), (G, M_2), \ldots, (G, M_k)\}.$$

By the similar way we can show that $\theta_m(G/N) = \{(G/N, M_1/N), (G/N, M_2/N), \ldots, (G/N, M_k/N)\}$.

Hence
\[d\theta_m(G) = \frac{|\theta_m(G)|}{m(G)} = \frac{|\theta_m(G)|}{m\left(\frac{G}{N}\right)} = d\theta_m\left(\frac{G}{N}\right). \]

Proposition 3.9 Let \(G \) be a nilpotent group. Then \(d\theta_m(G) = 1 \).

Proof It is clear by Theorem 3.8.

We can establish the above result for the degree of \(\theta^* \)-pairs and the proofs are very similar.

Finally, we state the following conjectures that we may find some evidence on it.

Conjecture 1 If \(d\theta_m(G) = 1 \), then \(G \) is nilpotent.

Conjecture 2 Let \(G_1 \) and \(G_2 \) be two finite groups. Then
\[d\theta_m(G_1 \times G_2) \leq d\theta_m(G_1)d\theta_m(G_2). \]

References

Received: June 22, 2006