Curves in Projective Spaces through a Given Set and Their Number of Moduli

E. Ballico

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Fix integers \(r, d, g, s \) such that \(r \geq 3, \ d \geq r + 2, \ g \geq 2, \ s \geq 0, \) and \((r + 1)d - rg - r^2 \geq 0. \) There is a nice family \(W(d, g, r)' \) of smooth curves of degree \(d \) and genus \(g \) of \(\mathbb{P}^r \) such that the natural map \(W(d, g, r)' \to M_g \) is dominant. Fix a general \(S \subset \mathbb{P}^r \) such that \(\#(S) = s \) and set \(W(d, g, r, s; S)' := \{ C \in W(d, g, r)' : S \subset C \}. \) Here we give upper bounds on \(s \) to get that the induced map \(W(d, g, r, s; S)' \to M_g \) is dominant.

Mathematics Subject Classification: 14H50

Keywords: pointed curve, pointed projective curves, Hilbert scheme of curves

For all non-negative integers \(g, s \) such that either \(g \geq 2 \) and \(s \geq 0 \) or \(g = 1 \) and \(s \geq 1 \) or \(g = 0 \) and \(s \geq 3 \) let \(M_{g, s} \) denote the moduli space of all pairs \((C, (P_1, \ldots, P_s)) \), where \(C \) is a smooth and connected projective curve with genus \(g \) and \((P_1, \ldots, P_s) \) is an ordered \(s \)-ple of distinct point of \(C \). For all integers \(d, g, r \) such that \(r \geq 3, \ g \geq 0 \) and either \(d \geq g + r \) or \(d \geq r + 2 \) and \(d - r < g \leq d - r + \lfloor (d - r - 2)/(r - 2) \rfloor \) let \(W(d, g, r) \) denote the irreducible component of \(\text{Hilb}(\mathbb{P}^r) \) described in [1], §1, and \(W(d, g, r)' \) the open part of \(W(d, g, r) \) parametrizing the smooth non degenerate curves of \(\mathbb{P}^r \) with degree \(d \) and genus \(g \) belonging to \(W(d, g, r) \). \(W(d, g, r) \neq \emptyset, \ h^1(C, \mathcal{O}_C(2)) = 0 \) and \(h^1(C, N_C) = 0 \) for a general \(C \in W(d, g, r)' \); \(\dim(W(D, g, r)) = (r + 1)d + (3 - r)(g - 1) \) and \(W(d, g, r) \) is generically smooth; if \(d \geq g + 3, \) then \(h^1(C, \mathcal{O}_C(1)) = 0 \) for a general \(C \in W(d, g, r)' \); if \(g \geq 2 \) and \(\rho(g, r, d) := g - (r + 1)(g + r - d) \geq 0, \) then the natural map \(u_{d, g, r} : W(d, g, r)' \to M_g \) is dominant ([1], §2 and §3).

Now fix a finite \(S \subset \mathbb{P}^r \) and order the points of it. Let \(W(d, g, r; S) \) denote

\(^1\) The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
the set of all \(C \in W(d, g, r) \) such that \(S \subset C_{\text{reg}} \). Let \(W(d, g, r; S)' \) denote the set of all \(C \in W(d, g, r) \) such that \(S \subset C \). The ordering of the points of \(S \) induces a morphism \(u_{d,g,r,S} : W(d, g, r; S)' \to M_{g,s} \), \(s := \sharp(S) \); we need to assume \(s \geq 3 \) if \(g = 0 \) and \(s \geq 1 \) if \(g = 1 \), otherwise \(M_{g,s} \) is not defined. If \(S, S' \) are general and \(\sharp(S) = \sharp(S') = s \), then the maps \(u_{d,g,r,S} \) and \(u_{d,g,r,S'} \) have the same numerical properties and we will write \(u_{d,g,r,S} \) for any of them. For all integers \(g \geq 2 \) and \(s \geq 0 \) there is a natural morphism \(\phi_{g,s} : M_{g,s} \to M_g \).

Set \(v_{d,g,r,S} := \phi_{g,s} \circ u_{d,g,r,S} \) and \(v_{d,g,r,S} := \phi_{g,s} \circ u_{d,g,r,S} \). The map \(v_{d,g,r,S} \) does not depend upon the choice of an ordering of \(S \). We will prove the following results.

Theorem 1. Fix integers \(d, g, r, s \) such that \(r \geq 3, g \geq 2, d \geq r + 2, s \geq 0 \) and \((r+1)d - rg \geq r(r+1)\). Fix a general \(S \subset P^r \) such that \(\sharp(S) = s \).

(i) If \(s \leq r + 2 \), then \(v_{d,g,r,S} : W(d, g, r; S)' \to M_g \) is dominant.

(ii) Assume \(s \geq r+3 \) and write \(g = 2+ar+br \) and \(d = 2+r+ar+b(r-1)+c \) for some non-negative integers \(a, b, c \). If \(s \leq c + a \), then \(v_{d,g,r,S} \) is dominant.

Proposition 1. Fix non-negative integers \(d, g, r, s \) such that \(r \geq 3, g \geq 2, s \geq 3, \) and \(\rho(g, r, d-s+2) \geq 0 \). Fix \(S \subset P^r \) such that \(\sharp(S) = s \) and there is a line \(D \) such that \(S \subset D \). Then the natural map \(v_{d,g,r,S} : W(d, g, r; S)' \to M_g \) is dominant.

Proposition 2. Fix integers \(d, g, r, s \) such that \(r \geq 3, g \geq 2, s \geq 4, \) and \(\rho(g, r, d-s+3) \geq 0 \). Fix \(S \subset P^r \) such that \(\sharp(S) = s \) and there is a line \(D \) such that \(\sharp(S \cap D) = s - 1 \). Then the natural map \(v_{d,g,r,s} : W(d, g, r; S)' \to M_g \) is dominant.

We work over an algebraically closed field \(K \) such that \(\text{char}(K) = 0 \).

Remark 1. Here we explain why in the statements of Theorem 1 and Propositions 1 we distinguished the cases:

(i) \(s \leq r + 2 \);

(ii) \(s \geq r + 3 \).

Let \(S \subset P^r \) be a subset in linearly general position such that \(\sharp(S) = s \). If \(s \geq r + 2 \) then no automorphism of \(P^r \) fix pointwise \(S \). If \(s \leq r + 1 \) the set of all projectivities fixing pointwise \(S \) has dimension \(r(r + 2 - s) \) and hence we need to take into account the integer \(r(r + 2 - s) \) in each dimensional computation. However, if \(s \leq r + 2 \) and \(u_{g,r,d,0} \) is dominant then \(u_{g,r,d,s} \) and hence \(u_{g,r,d,s} \) are dominant. Thus if \(s \leq r + 2 \), then \(u_{d,g,r,s} \) and/or \(v_{d,g,r,s} \) are dominant if and only if \(\rho(g, r, d) \geq 0 \) ([1], §3), proving the case \(s \leq r + 2 \) of Theorem 1. Furthermore, all linearly normal subsets of \(P^r \) with at most \(r + 2 \) points are projectively equivalent. Hence if \(s \leq r + 2 \) in this range \(u_{d,g,r,S} \) and/or are dominant if and only \(\rho(g, r, d) \geq 0 \), just assuming that \(S \) is in linearly general position. This is the reason why for \(s \leq r + 2 \) to get something new in Propositions 1 and 2 we look at points not in linearly general position. Hence we need to assume \(s \geq 3 \). The extremal case is when the \(s \) points are
collinear (Proposition 1). The next extremal case is when \(s \geq 4 \) and exactly \(s - 1 \) points are collinear (Proposition 2).

For all integers \(d, g, r, s \) such that \(r \geq 3 \) and \(s \geq r + 2 \) set \(\rho(g, r, d, s) := (r + 1)d - rg + r - s(r - 1) \).

Remark 2. Let \(C \subset \mathbb{P}^r \), \(r \geq 3 \), be a rational normal curve. Then \(N_C \) is isomorphic to the direct sum of \(r - 1 \) line bundles of degree \(r + 2 \) ([2] or [3], proof of Th. 5.2). Hence \(h^1(C, N_C(-S)) = 0 \) for every \(S \subset C \) such that \(\sharp(S) \leq r + 2 \). Now fix an integer \(m \) such that \(2 \leq m < r \) and let \(M \subset \mathbb{P}^r \) any \(m \)-dimensional linear subspace. Let \(T \subset M \) be a rational normal curve of \(M \). The first part of this Remark gives that \(N_{T,M} \) is the direct sum of \(m - 1 \) line bundles of degree \(m + 2 \). Hence \(N_T \) is the direct sum of \(m - 1 \) line bundles of degree \(m + 2 \) and \(m - m \) line bundles of degree \(m \).

Lemma 1. Fix integers \(d, g, r, s \) such that \(W(d, g, r) \) is defined, \(d \geq r + 1 \), and \(s \geq r + 2 \). Fix a general \(S \subset \mathbb{P}^r \) such that \(\sharp(S) = s \). Assume that \(v_{d,g,r,s} \) is dominant and the existence of \(C \in W(d, g, r; S) \) such that \(h^1(C, N_C(-S)) = 0 \). Then \(v_{d+r-1,g+r,r,s} \) is dominant and \(h^1(X, N_X(-S)) = 0 \) for a general \(X \in W(d + r - 1, g + r, S) \).

Proof. By semicontinuity we may assume that \(C \) is general in \(W(d, g, r; S) \). Hence \(v_{d,g,r,s}^{-1}(v_{d,g,r,s}(C)) \) has dimension \(\rho(g, r, d, s) \) at \(C \). Take a general hyperplane \(H \subset \mathbb{P}^r \). Thus \(H \) is transversal to \(C \) and we may find a set \(A \subset C \cap H \) which are in linear general position in \(H \) and \(\sharp(A) = r + 1 \). Let \(T \subset H \) the general linearly normal curve of \(H \) containing \(A \). Thus \(C \cap T = A \) and \(T \) intersects \(C \) quasi-transversally. Notice that \(Y := C \cup T \in W(d, g, r; S) \) ([1], Lemmas 1.2 and 1.3) and that the proof of the vanishing of \(h^1(Y, N_Y) \) given in [1], Lemma 1.2, gives \(h^1(Y, N_Y(-S)) = 0 \) for both assertions we use Remark 2 with \(m = r - 1 \). Thus \(h^1(X, N_X(-S)) = 0 \) for a general \(X \in W(d + r - 1, g + r, S) \). The curve \(Y \) is stable and \(W(d + r - 1, g + r, r; S) \) is smooth at \(Y \). Hence check that \(v_{d+r-1,g+r,r,s} \) is dominant, it is sufficient to check that the fiber of \(v_{d+r-1,g+r,r,s} \) over \(Y \) has dimension \(\rho(g + r, r, d + r - 1, s) \). Notice that \(\rho(g + r, r, d + r - 1, s) = \rho(g, r, d, s) \) and copy the part “ \(\rho(g, r, d) \geq 0 \) ” of [1], Prop. 3.1.

Lemma 2. Fix integers \(d, g, r, s \) such that \(W(d, g, r) \) is defined, \(d \geq r + 1 \), and \(s \geq r + 2 \). Fix a general \(S \subset \mathbb{P}^r \) such that \(\sharp(S) = s \). Assume that \(v_{d,g,r,s} \) is dominant and the existence of \(C \in W(d, g, r; S) \) such that \(h^1(C, N_C(-S)) = 0 \). Fix a general \(P \in \mathbb{P}^r \) and set \(S' := S \cup \{P\} \). Then \(v_{d+r,g+r,r,s}^{S'} \) is dominant and \(h^1(X, N_X(-S')) = 0 \) for a general \(X \in W(d + r, g + r, S') \).

Proof. We follow the proof of Lemma 2. Now we take as \(T \) a general rational normal curve of \(\mathbb{P}^r \) containing \(P \) and \(r + 1 \) general points of \(C \). Hence \(Y := C \cup T \in W(d + r, g + r, r; S') \). We have \(h^1(Y, N_Y(-S')) = 0 \) by Remark 2 and the proof of [1], Lemma 1.2. Notice that \(\rho(g + r, r, d + r, s + 1) = \rho(g, r, d, s) + 1 \). By Brill-Noether theory for \(C \) and the generality of \(C \cap T \) there are \(\infty^1 \) embeddings of \(Y \) in \(\mathbb{P}^r \) near the given one and with \(S' \) in there images.
Proof of Theorem 1. The case \(s \leq g + 2\) follows from Remark 1 and the dominance of the map \(v_{d,g,r,0}\) proved in [1], Prop. 3.1. Then use \(a\) times Lemma 1 and \(b\) times Lemma 2. If \(c > 0\) use that for any fixed curve \(C\), any \(P \in C_{\text{reg}}\) and for a general \(A \subset \mathbb{P}^r\) such that \(\sharp(A) = c\) there is a smooth degree \(c\) rational curve \(T\) containing \(A\), such that \(T \cap C = \{P\}\) and \(T\) intersects quasi-transversally \(C\).

Proof of Proposition 1. Fix \(S' \subset S\) such that \(\sharp(S') = 2\). Since \(\sharp(S') \leq r + 2\) and \(\rho(g, r, d - s + 2) \geq 0\), Remark 1 and [1], §3, implies that \(v_{d-s+2,g,r;S'}\) is dominant. Take a general \(C \in W(d-s+2,g,r;S')\). By the generality of \(C\) we may assume \(S \cap C = S'\). Call \(C'\) the union of \(C\) and \(s-2\) general lines, each of them intersecting quasi-transversally \(C\) at exactly one point and containing a different point of \(S \setminus S'\). \(C'\) is the stable curve associated to this union.

Proof of Proposition 2. Take \(S' \subset S\) such that \(\sharp(S') = 3\) and \(\sharp(S' \cap D) = 2\). Since \(\sharp(S') \leq r + 2\) we may repeat verbatim the proof of Proposition 1.

References

Received: July 24, 2006