On Generalized Derivations in Semiprime Rings

M. N. Daif

Department of Mathematics, Faculty of Science
Al-Azhar University, Nasr City (11884), Cairo, Egypt
nagydaif@yahoo.com

M. S. Tammam El-Sayiad

Department of Mathematics, Faculty of Science
Beni Suef University, Beni Suef (62111), Egypt
m_s_tammam@yahoo.com

Abstract

The purpose of this note is to prove the following result. Let \(R \) be a semiprime ring of characteristic not 2 and \(G: R \rightarrow R \) be an additive mapping such that \(G(x^2) = G(x)x + xD(x) \) holds for all \(x \in R \) and some derivations \(D \) of \(R \). Then \(G \) is generalized derivation.

Mathematics Subject Classification: 16W10, 16W25, 16W20

Keywords: ring, prime ring, semiprime ring, centralizer, Jordan centralizer, derivation, Jordan derivation, generalized derivation, generalized derivation

1 Introduction

This note is motivated by the work of Zalar [6]. Throughout, \(R \) will represent an associative ring with center \(Z(R) \). A ring \(R \) is \(n \)-torsion free, if \(nx = 0 \), \(x \in R \) implies \(x = 0 \), where \(n \) is a positive integer. Recall that \(R \) is prime if \(aRb = (0) \) implies \(a = 0 \) or \(b = 0 \), and semiprime if \(aRa = (0) \) implies \(a = 0 \). An additive mapping \(T: R \rightarrow R \) is called a left (right) centralizer in case \(T(xy) = T(x)y \ (T(xy) = xT(y)) \) holds for all \(x, y \in R \) and is called a Jordan left (right) centralizer in case \(T(x^2) = T(x)x \ (T(x^2) = xT(x)) \) holds for all \(x \in R \). A result of Zalar [6] asserts that any Jordan centralizer on a semiprime ring of characteristic not 2 is a centralizer. An additive mapping \(D: R \rightarrow R \) is called a derivation if \(D(xy) = D(x)y + xD(y) \) holds for all pairs \(x, y \in R \).
and is called a Jordan derivation in case $D(x^2) = D(x)x + xD(x)$ holds for all $x \in R$. A derivation D is inner if there exists $a \in R$ such that $D(x) = ax - xa$ holds for all $x \in R$. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein \cite{4} asserts that any Jordan derivation on 2-torsion free prime ring is a derivation. Cusack \cite{2} generalized Herstein’s theorem to 2-torsion free semiprime ring.

In \cite{3}, Hvala has defined the notion of a generalized derivation as follows: An additive mapping $G : R \to R$ is said to be a generalized derivation if there exists a derivation $D : R \to R$ such that $G(xy) = G(x)y + xD(y)$ for all $x, y \in R$. Also, he called the maps of the form $x \to ax + xb$ where a, b are fixed elements in R by the inner generalized derivations. Ashraf and Nadeem-Ur-Rehman, in \cite{5}, have defined the concept of a Jordan generalized derivation as follows: An additive mapping $G : R \to R$ is said to be a Jordan generalized derivation if there exists a derivation $D : R \to R$ such that $G(x^2) = G(x)x + xD(x)$ for all $x \in R$. Hence the concept of a generalized derivation covers both the concepts of a derivation and a left centralizers and the concept of a Jordan generalized derivation covers both the concepts of a Jordan derivation and a left Jordan centralizers. In [1, Remark 1] Brešar proved that for a semiprime ring R, if G is a function from R to R and $D : R \to R$ is an additive mapping such that $G(xy) = G(x)y + xD(y)$ for all $x, y \in R$, then D is uniquely determined by G and moreover G must be a derivation. Ashraf and Nadeem-Ur-Rehman, in \cite{5}, proved the following result: Let R be a 2-torsion free ring such that R has a commutator which is not a zero divisor, then every Jordan generalized derivation on R is a generalized derivation.

In this note, using Zalar’s method, we study the same result of Ashraf and Nadeem-Ur-Rehman but for a semiprime ring, and without the condition of zero divisor, i.e., if R is a semiprime ring of characteristic not 2 and G is an additive mapping which satisfies

\[G(x^2) = G(x)x + xD(x) \]

holds for all $x \in R$ and some derivation D of R, then G is generalized derivation. This result will be a generalization of the result of Zalar \cite{6}. In order to prove our result we will need the following lemmas which are due to Zalar.

Lemma 1.1 (\cite{6} Lemma 1.1). Let R be a semiprime ring. If $a, b \in R$ are such that $axb = 0$ for all $x \in R$, then $ab = ba = 0$.

Lemma 1.2 (\cite{6} Lemma 1.2). Let R be a semiprime ring and $\theta, \phi : R \times R \to R$ biadditive mappings. If $\theta(x, y)w\phi(x, y) = 0$ for all $x, y, w \in R$, then $\theta(x, y)w\phi(u, v) = 0$ for all $x, y, u, v, w \in R$.

Lemma 1.3 (\cite{6} Lemma 1.3). Let R be a semiprime ring and $a \in R$ be some fixed element. If $a[\cdot, \cdot] = 0$ for all $x, y \in R$, then there exists an ideal U of R such that $a \in U \subseteq Z(R)$ holds.
2 The Main Result

Theorem 2.1. Let R be a semiprime ring of characteristic not 2 and $G: R \rightarrow R$ be an additive mapping satisfying the relation

$$ G(x^2) = G(x)x + xD(x), $$

for all $x \in R$ and some derivation D of R. Then G is generalized derivation.

Proof. Replacing x by $x + y$ in (1) we get

$$ G(xy + yx) = G(x)y + G(y)x + xD(y) + yD(x), \quad x, y \in R. $$

Replacing y by $xy + yx$ in (2) and using (2) we obtain

$$ G(x^2y +yx^2) + 2G(xy) = G(x)xy + G(x)yx + G(y)x^2 + xD(y)x + yD(x)x + xD(xy + yx) + (xy + yx)D(x), \quad x, y \in R. $$

On the other hand, replacing x by x^2 in (2) and adding $2G(xy)$ to both sides we get

$$ G(x^2y + yx^2) + 2G(xy) = G(x)xy + xD(x)y + G(y)x^2 + x^2D(y) + yxD(x) + yD(x)x + 2G(xy), \quad x, y \in R. $$

Comparing (3) and (4) we obtain

$$ G(xy) = G(x)yx + xD(yx), \quad x, y \in R. $$

Putting $x = x + z$ in (5), we get

$$ G(xyz + zyx) = G(x)yz + G(z)yx + xD(yz) + zD(yx), \quad x, y, z \in R. $$

Let $F = G(xzyx + yxzxy)$, we shall compute it in two different ways. Using (5) we have

$$ F = G(x)zyx + G(y)xzxy + xD(yzx) + yD(xzy), \quad x, y, z \in R. $$

Using (6) we have

$$ F = G(xy)zyx + G(y)xzxy + xyD(zyx) + yxD(zxy), \quad x, y, z \in R. $$

Comparing (7) and (8) we get

$$ \theta(x, y)zyx + \theta(y, x)zxy = 0, \quad x, y, z \in R, $$
where $\theta(x, y)$ stands for $G(xy) - G(x)y - xD(y)$. In the concept of the definition of θ, equation (2) can be rewritten in the form $\theta(x, y) = -\theta(y, x)$. Using this notation in equation (9) we get

$$\theta(x, y)z[x, y] = 0, \quad x, y, z \in R. \quad (10)$$

Using Lemma 1.2 we get

$$\theta(x, y)z[u, v] = 0, \quad x, y, z, u, v \in R. \quad (11)$$

Using Lemma 1.1 we obtain

$$\theta(x, y)[u, v] = 0, \quad x, y, u, v \in R. \quad (12)$$

Now fix $x, y \in R$ and write θ instead of $\theta(x, y)$ to simplify further writing. Using Lemma 1.3 we get the existence of an ideal U such that $\theta \in U \subset Z(R)$ holds. In particular, $b\theta$, $\theta b \in Z(R)$ for all $b \in R$. This gives us

$$x.\theta^2 y = \theta^2 y.x = y\theta^2 x = y.\theta^2 x.$$

This gives us $4G(x.\theta^2 y) = 4G(y.\theta^2 x)$. Now we will compute each side of this equality by using (2) and the above notation.

$$4G(x.\theta^2 y) = 2G(x\theta^2 y + \theta^2 yx) =$$

$$= 2G(x)\theta^2 y + 2xD(\theta^2 y) + 2G(\theta^2 y)x + 2\theta^2 yD(x) =$$

$$= 2G(x)\theta^2 y + G(\theta^2 y + y\theta^2)x + 2x D(\theta^2 y) + 2\theta^2 yD(x) =$$

$$= 2G(x)\theta^2 y + G(\theta)\theta y x + \theta D(\theta)y x + G(y)\theta^2 x + \theta^2 D(y)x + yD(\theta^2)x +$$

$$2x D(\theta^2 y) + 2\theta^2 yD(x).$$

So we get

$$4G(x.\theta^2 y) = 2G(x)\theta^2 y + G(\theta)\theta y x + \theta D(\theta)y x + G(y)\theta^2 x + \theta^2 D(y)x +$$

$$yD(\theta^2)x + 2x D(\theta^2 y) + 2\theta^2 yD(x), \quad x, y \in R. \quad (13)$$

Moreover,

$$4G(y.\theta^2 x) = 2G(y\theta^2 x + \theta^2 xy) =$$

$$= 2G(y)\theta^2 x + 2y D(\theta^2 x) + 2G(\theta^2 x)y + 2\theta^2 xD(y) =$$

$$= 2G(y)\theta^2 x + G(\theta^2 x + x\theta^2)y + 2y D(\theta^2 x) + 2\theta^2 xD(y) =$$

$$= 2G(y)\theta^2 x + G(\theta)\theta y x + \theta D(\theta)x y + G(x)\theta^2 y + \theta^2 D(x)y + xD(\theta^2)y +$$

$$2y D(\theta^2 x) + 2\theta^2 xD(y).$$
So we get
\[4G(y, \theta^2 x) = 2G(y)\theta^2 x + G(\theta)\theta xy + \theta D(\theta)xy + G(x)\theta^2 y + \theta^2 D(x)y + xD(\theta^2)y + 2yD(\theta^2)x + 2\theta^2 xD(y), \quad x, y \in R. \] (14)

Comparing (13) and (14) and using the following notations
\[\theta yx = \theta y, x = x\theta y = \theta xy, \]
\[\theta D(\theta)yx = D(\theta)\theta yx = D(\theta)\theta xy = \theta D(\theta)xy, \]
\[x\theta D(\theta)y = D(\theta)x\theta y = D(\theta)\theta xy = D(\theta)\theta yx = \theta yD(\theta)x = \theta yD(\theta)x, \]
we obtain
\[G(x)\theta^2 y + x\theta^2 D(y) = G(y)\theta^2 x + y\theta^2 D(x) \]
which gives
\[\phi(x, y)\theta^2 = \phi(y, x)\theta^2, \]
where \(\phi(x, y) \) stands for \(G(x)y + xD(y) \). On the other hand, we also have
\[4G(xy\theta^2) = 4G(x\theta, y\theta). \]
We will compute each side of this equality by using (2) and the properties of \(\theta \), so we get
\[4G(xy\theta^2) = 2G(xy\theta^2 + \theta^2 xy) = 2G(xy)\theta^2 + 2xyD(\theta^2) + 2G(\theta^2)xy + 2\theta^2 D(xy), \]
which gives
\[4G(xy\theta^2) = 2G(xy)\theta^2 + 2xyD(\theta^2) + 2G(\theta^2)xy + 2\theta^2 D(xy), \quad x, y \in R. \] (16)
Moreover,
\[4G(x\theta, y\theta) = 2G(x\theta y\theta + y\theta x\theta) = \]
\[= 2G(\theta x)\theta y + 2\theta xD(\theta y) + 2G(\theta y)\theta x + 2\theta yD(\theta x) = \]
\[= G(\theta x + \theta x)\theta y + 2\theta xD(\theta y) + G(\theta y + \theta y)\theta x + 2\theta yD(\theta x) = \]
\[= G(x)\theta^2 y + G(\theta)\theta xy + xD(\theta)\theta y + \theta D(x)\theta y + 2\theta xD(\theta y) + G(y)\theta^2 x + \]
\[G(\theta)\theta yx + yD(\theta)\theta x + \theta D(y)\theta x + 2\theta yD(\theta x). \]
So we obtain
\[4G(x\theta, y\theta) = G(x)\theta^2 y + G(\theta)\theta xy + xD(\theta)\theta y \]
\[+ \theta D(x)\theta y + 2\theta xD(\theta y) + G(y)\theta^2 x + G(\theta)\theta yx + yD(\theta)\theta x \]
\[+ \theta D(y)\theta x + 2\theta yD(\theta x), \quad x, y \in R. \] (17)
Comparing (16) and (17), we obtain
\[2G(xy)\theta^2 = \phi(x, y)\theta^2 + \phi(y, x)\theta^2, \quad x, y \in R. \] (18)
Using (15), finally we get \(G(xy)\theta^2 = \phi(x, y)\theta^2 \). But \(\theta(x, y) = G(xy) - \phi(x, y) \) and this means \(\theta^3 = 0 \) so that
\[\theta^2 R \theta^2 = \theta^4 R = (0), \]
\[\theta R \theta = \theta^2 R = (0), \]

which implies \(\theta = 0 \), and the proof is complete.

It is clear that if we let the derivation \(D \) to be the zero derivation in the above theorem, we get the following result.

Corollary 2.2 ([6] Proposition 1.4). Let \(R \) be a semiprime ring of characteristic not 2 and \(T : R \rightarrow R \) an additive mapping which satisfies \(T(x^2) = T(x)x \) for all \(x \in R \). Then \(T \) is a left centralizer.

References

Received: June 16, 2007