On MC-Hypercentral Triply Factorized Groups

Francesco Russo

Department of Mathematics
Office n.17, campus of Monte S.Angelo, via Cinthia 80126
University of Naples, Naples, Italy
francesco.russo@dma.unina.it

Abstract

A group G is called triply factorized in the product of two subgroups A, B and a normal subgroup K of G, if $G = AB = AK = BK$. This decomposition of G has been studied by several authors, investigating on those properties which can be carried from A, B and K to G. It is known that if A, B and K are FC-groups and K has restrictions on the rank, then G is again an FC-group. The present paper extends this result to wider classes of FC-groups.

Mathematics Subject Classification: 20F24; 20F14

Keywords: groups with soluble minimax conjugacy classes; triply factorized groups; generalized FC-groups

1. Introduction

Let \mathfrak{X} be a class of groups. An element x of a group G is said to be $\mathfrak{X}C$-central, or $\mathfrak{X}C$-element of G, if $G/C_G(x^G)$ satisfies \mathfrak{X}, where the symbol x^G represents the normal closure in G of the subgroup $<x>$. Sometimes the factor $G/C_G(x^G)$ is denoted by $Aut_G(x^G)$ to recall that $G/C_G(x^G)$ is a group of automorphisms of x^G (see [10, Chapter 3]).

A minimax group is a group G which has a series of finite length each of whose factors satisfies either the maximal condition or the minimal condition on subgroups. The maximal condition on subgroups is often denoted with max and the minimal condition on subgroups is often denoted with min. Thus minimax is a finiteness property which generalizes both max and min. It is easy to verify that the class of minimax groups is closed with respect to forming, subgroups, images and extensions of its members [10,vol.II, p.166]. A soluble minimax group is a minimax group which is soluble. The structure
of soluble minimax group is described by [10, Lemma 10.31] and [10, Sections 10.3, 10.4]. Finally a group G is said to be (soluble minimax)-by-finite if it contains a normal soluble minimax subgroup S of finite index in G.

The definition of XC-element of G can be specialized for the class of (soluble minimax)-by-finite groups in the following way. If G is a group and x is an element of G, then x is called MC-element of G if $G/C_G(x^G)$ is (soluble minimax)-by-finite. If x and y are MC-elements of G, then both $G/C_G(x^G)$ and $G/C_G(y^G)$ are (soluble minimax)-by-finite, so $G/(C_G(x^G) \cap C_G(y^G))$ is also (soluble minimax)-by-finite. But the intersection of $C_G(x^G)$ with $C_G(y^G)$ lies in $C_G((xy)^{-1}G)$, so that $G/C_G((xy)^{-1}G)$ is (soluble minimax)-by-finite and xy^{-1} is an MC-element of G. Hence the MC-elements of G form a subgroup $M(G)$ and it is easy to check that $M(G)$ is characteristic in G.

This remark allows us to define the series

$$1 = M_0 \triangleleft M_1 \triangleleft \ldots \triangleleft M_\alpha \triangleleft M_{\alpha+1} \triangleleft \ldots ,$$

where $M_1 = M(G)$, the factor $M_{\alpha+1}/M_\alpha$ is the subgroup of G/M_α generated by the MC-elements of G/M_α and

$$M_\lambda = \bigcup_{\alpha<\lambda} M_\alpha,$$

with α ordinal and λ limit ordinal. This series is a characteristic ascending series of G and it is called upper MC-central series of G. The last term of the upper MC-central series of G is called MC-hypercenter of G and it is denoted by $\bar{M}(G)$. If $G = M_\beta$, for some ordinal β, we say that G is an MC-hypercentral group of type at most β and this is equivalent to say that $G = \bar{M}(G)$.

The MC-length of an MC-hypercentral group is defined to be the least ordinal β such that $G = M_\beta$. When $G = M_c$ for some positive integer c, we say that G is MC-nilpotent of length c. A group G is said to be an MC-group if all its elements are MC-elements, that is, if G has MC-length at most 1.

The method which has been used to introduce the MC-upper central series of a group follows the standard method which has been used by Baer and McLain (see [10, Chapter 4]) for FC-groups. In analogy with FC-groups, the term $M(G)$ of the upper MC-central series of G is said to be the MC-center of G and the α-th term of the upper MC-central series of G is said to be the MC-center of length α of G. Roughly speaking, the upper MC-central series of G measures the distance of G to be an MC-group. By definitions, it happens that $Z(G) \leq F(G) \leq M(G)$, where $F(G)$ is the FC-center of G, that is, $F(G)$ is the subgroup of G generated by the elements which have only a finite number of conjugates. Further information on MC-hypercentral series of a group can be found also in [11].
The notion of FC-hypercentral series has been introduced by McLain (see for instance [10, Theorems 4.37, 4.38]) and restrictions on FC-hypercentral groups which satisfy \max or \min are obtained in [5] and [9]. These restrictions are seen to be valid also for weaker finiteness conditions than \max and \min (see for instance [10, Theorems 4.39, 4.39.2]). The results of [5] and [9] are considered classic in Theory of Generalized FC-groups and they have been extended by [2] and [8] to classes of groups wider than FC-hypercentral groups (see [2, Theorems A,B,C] and [8, Theorems 2.4,3.2.3.5]). [2] regards XC-hypercentral groups, where X is either the class of polycyclic-by-finite groups or the class of Chernikov groups. Such groups are called respectively PC-hypercentral and CC-hypercentral groups. [8] treats XC-hypercentral groups, where X is a Schur class. Recall that a class X of groups is said to be a Schur class if for every group G such that $G/Z(G)$ belongs to X also the commutator subgroup G' belongs to X.

We recall that a group G is said to be triply factorized in the product of two subgroups A, B and a normal subgroup K of G, if $G = AB = AK = BK$. As testified in [1, Chapter 6], triply factorized groups are well-known and many properties are often carried from A, B and K to G (see for instance [1,Theorems 6.3.4, 6.3.6, 6.3.7, 6.3.8, 6.5.1, 6.5.3, 6.5.4, 6.5.5, 6.5.11, 6.5.12, 6.5.13, 6.6.3, 6.6.6, 6.6.7,6.6.11]). In particular [8,Theorem 4.1] shows that if the group $G = AB = AK = BK$ is triply factorized in the product of two CC-hypercentral subgroups A and B and a soluble minimax normal subgroup K of G, then G is CC-hypercentral. The present paper improves [1, Theorems 6.5.1,6.5.3] and [8,Theorem 4.1], considering the class of MC-hypercentral groups. We prove

Main Theorem. Let the group $G = AB = AK = BK$ be the product of two subgroups A and B and a soluble minimax normal subgroup K of G.

(i) If A, B and K are MC-nilpotent, then G is MC-nilpotent.

(ii) If A, B and K are MC-hypercentral, then G is MC-hypercentral.

Section 2 describes the general properties of MC-groups; Section 3 is devoted to the Proof of Main Theorem, ending with some examples to Main Theorem. Most of our notation is standard and can be found in [10]. For the literature on triply factorized groups, we refer to [1]. For the literature on PC-groups, CC-groups and MC-groups we refer to [10] and to [3], [4], [6], [7]. In particular:

- an element x of a group G is said to be a CC-element of G, if $G/C_G(x^G)$ is a Chernikov group. A group G whose elements are all CC-elements is said to be a CC-group;
- an element \(x \) of a group \(G \) is said to be a PC-element of \(G \), if \(G/C_G(x^G) \) is a polycyclic-by-finite group. A group \(G \) whose elements are all PC-elements is said to be a PC-group;

- the symbols \(F(G) \), \(P(G) \), \(C(G) \), \(M(G) \) are used to denote respectively the FC-center, the PC-center, the CC-center, the MC-center of \(G \). Clearly the definition of \(P(G) \) and \(C(G) \) can be given, following the definition of \(M(G) \);

- a group \(G \) has finite torsion-free rank if it has a series of finite length whose factors are either periodic or infinite cyclic. The number of infinite cyclic factors in such a series is an invariant of \(G \) called its torsion-free rank;

- a group \(G \) has finite minimax rank if it has a series of finite length whose factors are either finite or infinite cyclic or quasicyclic of type \(p^\infty \), where \(p \) is any prime. The number of infinite factors in such series is an invariant, called minimax rank of \(G \).

- a group \(G \) has finite abelian section rank if it has no infinite abelian sections of prime exponent. It is easy to verify that this condition is equivalent to require that \(G \) has each abelian section of finite rank (see [10,vol.2,p.120]).

2. Preliminaries

For convenience of the reader this Section constitutes a survey on MC-groups.

Lemma 2.1. Let \(G \) be an MC-group, \(n \) be a positive integer and \(x_1, \ldots, x_n \) be elements of \(G \). If \(X = \langle x_1, \ldots, x_n \rangle \), then \(X^G \) is (soluble minimax)-by-finite.

Proof. This follows by [6, Theorem 2] (or in English [7, Corollary 2.1]). \(\square \)

Lemma 2.1 shows that an MC-group can be covered by normal (soluble minimax)-by-finite subgroups (see [6, p.161-162]). [3, Theorem 2.2] and [10, Theorem 4.36] give the corresponding condition for PC-groups and CC-groups. Another formulation of Lemma 2.1 is shown by the next lemma.

Lemma 2.2. If \(G \) is an MC-group, then it is locally-(normal and (soluble minimax)-by-finite). Moreover if \(G \) is an MC-group, then \(G' \) is locally-(normal and (soluble minimax)-by-finite).

Proof. This follows by [6, Theorem 2] (or in English [7, Corollary 2.1]). \(\square \)
More interesting is to note what happens for locally nilpotent and locally soluble MC-groups.

Lemma 2.3. If G is a locally soluble MC-group, then it is ω-hyperabelian. If G is a locally nilpotent MC-group, then it is 2ω-hyperabelian.

Proof. This follows by [6, Theorem 3].

A corresponding result for locally nilpotent and locally soluble PC-groups is [3, Theorem 3.2]. A corresponding result for locally nilpotent and locally soluble CC-groups is [4, Theorem 2.2].

The following two lemmas are referred respectively to [8, Theorem 3.2] and [8, Corollary 3.3].

Lemma 2.4. If G is an MC-hypercentral group with finite torsion-free rank and has no nontrivial subnormal (soluble minimax)-by-finite subgroups, then G is nilpotent-by-(soluble minimax)-by-finite.

Proof. We note that the class of (soluble minimax)-by-finite groups is a Schur class which contains the class of finite groups and it is closed with respect to forming subgroups, images and extensions of its members. Then the result follows by [8, Theorem 3.2].

Lemma 2.5. Let G be a CC-hypercentral groups with finite torsion-free rank. If G has no nontrivial periodic normal subgroups, then G is nilpotent-by-finite.

Proof. This follows by [8, Corollary 3.3].

We will use the next adaptaments of Lemma 2.5.

Lemma 2.6. Let G be an MC-hypercentral group with finite abelian section rank. If G has neither periodic nor (soluble minimax)-by-finite nontrivial normal subgroups, then G is nilpotent-by-finite.

Proof. Since G has finite abelian section rank, the subgroup generated by any system of (soluble minimax)-by-finite normal subgroups of G is (soluble minimax)-by-finite, then G has no nontrivial (soluble minimax)-by-finite subnormal subgroups by [10, Lemma 1.31]. This allows us to apply Lemma 2.4, so G is nilpotent-by-(soluble minimax)-by-finite and there exists a normal nilpotent subgroup N of G such that G/N is (soluble minimax)-by-finite. Clearly N must be torsion-free. Let R/N be the finite residual of G/N. The group $Z_{i+1}(N)/Z_i(N)$ is torsion-free abelian of finite rank for each non-negative integer i. But $G/C_N(Z_{i+1}(N)/Z_i(N))$ is a group of automorphisms of a torsion-free abelian group of finite rank. Since G has finite abelian section rank, $G/C_N(Z_{i+1}(N)/Z_i(N))$ is torsion-free abelian of finite rank or finite. This means that R acts trivially on $Z_{i+1}(N)/Z_i(N)$ for every $i \geq 0$. Put c the nilpotency class of N, we have that $N = Z_c(N)$ is contained in $Z_c(R)$, so that
Lemma 2.7. If G is a group with nontrivial MC-center, then G contains a nontrivial normal subgroup which is either abelian or finite.

Proof. If $M(G) = P(G)$ or $M(G) = C(G)$, then the result follows by [2, Lemma 2]. Given $x \in M(G)$, $x^G/Z(x^G)$ is (soluble minimax)-by-finite. If $Z(x^G) \neq 1$, G has a nontrivial normal abelian subgroup; if $Z(x^G) = 1$, then x^G is (soluble minimax)-by-finite and the result is proved.

We end with a variation of the famous Hall’s Criterion for the nilpotence of a group (see [10, Theorem 2.27]).

Lemma 2.8. Let \mathfrak{X} be a class of groups which is closed with respect to forming subgroups, images and extensions of its members. If G is a group and N is a nilpotent normal subgroup of G such that G/N' is $\mathfrak{X}C$-nilpotent (respectively $\mathfrak{X}C$-hypercentral), then G is $\mathfrak{X}C$-nilpotent (respectively $\mathfrak{X}C$-hypercentral).

Proof. This follows by [8, Lemma 3.1].

3. Main Theorem

Proof of the Main Theorem. Let $G = AB = AK = BK$ be triply factorized in the product of two MC-nilpotent subgroups A, B and a normal MC-nilpotent minimax soluble subgroup K of G. Suppose that the statement (i) is false and $G = AB = AK = BK$ be a counterexample such that the minimax rank of K is minimal.

If T is the largest periodic normal subgroup of K, then T is a Chernikov group and so it is contained in the second term of the upper MC-central series of G. Then we may suppose that K has no nontrivial periodic normal subgroups. If D is the largest (soluble minimax)-by-finite normal subgroup of K, again D is contained in the second term of the upper MC-central series of G. Then we may suppose that K has neither periodic nor (soluble minimax)-by-finite nontrivial normal subgroups. Then K is nilpotent-by-finite by Lemma 2.6. This means that there is a normal nilpotent subgroup K_0 of K of finite index $|K : K_0|$. The factorizer $X(K_0) = AK_0 \cap BK_0$ of K_0 in G has finite index in G and hence X is not MC-nilpotent.

On the other hand X has triple factorization

$$X = A^*B^* = A^*K_0 = B^*K_0,$$

where $A^* = A \cap BK_0$ and $B^* = B \cap AK_0$. From this we may suppose that K is nilpotent and then torsion-free.

Let $K' \neq 1$. The group K/K' has minimax rank less than K, so G/K' is an MC-nilpotent group and hence, by Lemma 2.8, also G is MC-nilpotent. This
contradiction forces K to be abelian. Let $M(A)$ be the MC-center of A. Then the normal subgroup $M(A) \cap K$ of G lies in $M(G)$. Thus the factor group $G/(M(A) \cap K)$ is not MC-nilpotent, and $M(A) \cap K = 1$. Since A is MC-nilpotent, we have also $A \cap K = 1$ (see [10, Lemma 2.16]). The subgroup $C_A(K)$ is normal in G and $G/C_A(K)$ is not MC-nilpotent, being $C_A(K) \cap K = 1$. But

$$C_{A/C_A(K)}((KC_A(K))/C_A(K)) = 1,$$

then we may suppose that $C_A(K) = 1$, and therefore A is isomorphic with a group of automorphisms of K. But K is torsion-free abelian of finite torsion-free rank and A has an ascending normal series whose factors are either abelian or finite by Lemma 2.7. We conclude that A is (soluble minimax)-by-finite. A similar argument can be applied to show that B is a (soluble minimax)-by-finite group. Then G is a (soluble minimax)-by-finite group. This contradiction shows that the statement (i) holds.

The proof of the statement (ii) is similar. □

Examples and Counterexamples.

1. The infinite dihedral group. Let G be the group which is presented by

$$< a, x : a^x = a^{-1}, x^2 = 1 >.$$

G has $F(G) = C(G) = Z(G) = 1$ and $M(G) = P(G) = G$. Obviously G is triply factorized by $G = < a, x > < x > = < a, x > < a > = < x > < a >$ and it respects Main Theorem.

2. The group of P.Hall, described in [10, Theorem 5.36], is a 2-generated group such that $Z(G)$ is a quasicyclic p-group, where p is any prime, G'' is central in G and $G/Z(G)$ is isomorphic to the wreath product of two infinite cyclic groups. Such group is a finitely generated PC-nilpotent and MC-nilpotent group of length 3. G is triply factorized by $G = AB = AK = BK$, where $K = Z(G)$ is a normal group with min and $A = B = < x > wr < y >$ with $< x >$ and $< y >$ infinite cyclic. Furthermore A, B and K are MC-nilpotent. This shows the validity of Main Theorem.

3. The group $G = < x > wr < y >$, where $< x >$ and $< y >$ are infinite cyclic, is an example of PC-nilpotent and MC-nilpotent group of length 2 which is neither an FC-hypercentral group, nor a CC-hypercentral group, nor a hypercentral group. In fact $F(G) = C(G) = Z(G) = 1$, $P(G) = M(G) = B$ and $P_2(G) = M_2(G) = G$, where B is an abelian free group of countable rank and it denotes the base of G. Here we notice that G cannot be written as triply factorized product, since it has no nontrivial soluble minimax normal subgroups. This shows that the converse of Main Theorem cannot hold.
References

Received: June 17, 2007