Some Cubic Blaschke Products and Quadratic Rational Functions with Siegel Disks

Koh Katagata

Interdisciplinary Graduate School of Science and Engineering
Shimane University, Matsue 690-8504, Japan
katagata@math.shimane-u.ac.jp

Abstract

We show that for any given complex number μ with modulus at most one and any given real number α, there exists a cubic Blaschke product such that the point at infinity is its fixed point with multiplier μ and its restriction on the unit circle is a critical circle map with rotation number α. Moreover if the given real number α is irrational of bounded type, then a modified Blaschke product is quasiconformally conjugate to some quadratic rational function with a Siegel disk whose boundary is a quasicircle containing its critical point and the point at infinity is its fixed point with multiplier μ.

Mathematics Subject Classification: 37F50, 30D05, 37F10

Keywords: Blaschke product, Siegel disk

1 Introduction

Let $f : \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a rational function of degree $d \geq 2$ with fixed point of multiplier $e^{2\pi i \alpha}$ at the origin, where $\alpha \in [0, 1]$ is irrational. If f is linearizable at the origin, then there exists a local holomorphic change of coordinate $\Phi : \mathbb{D} \rightarrow \mathbb{C}$ with $0 = \Phi(0)$ such that $\Phi^{-1} \circ f \circ \Phi(z) = e^{2\pi i \alpha}z$, where \mathbb{D} is the unit disk. The Fatou component Δ of f containing $\Phi(\mathbb{D})$ is called the Siegel disk centered at the origin.

For the irrational number α, we consider the continued fraction expansion

$$\alpha = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}}$$
of α and then a sequence of rational numbers

$$\frac{p_n}{q_n} = \frac{1}{a_1 + \frac{1}{a_2 + \cdots + \frac{1}{a_n}}}$$

converges to α, where a_n is a positive integer uniquely determined by α for all $n \in \mathbb{N}$. The irrational number α is a Diophantine number of order $\kappa \geq 2$ if there exists $\varepsilon > 0$ such that

$$\left| \alpha - \frac{p}{q} \right| > \frac{\varepsilon}{q^\kappa}$$

for all rational numbers p/q. The class of Diophantine numbers of order κ is denoted by D_κ. Diophantine numbers of order 2 are said to be of bounded type. The irrational number α is a Bryuno number if the sum

$$\sum_{n=1}^{\infty} \frac{\log q_{n+1}}{q_n}$$

converges. The class of Bryuno numbers is denoted by B. Note that for $\kappa > 2$, $D_2 \subset D_\kappa \subset B$ and D_κ has full measure on \mathbb{R}/\mathbb{Z} (see [6] or [10]). Bryuno showed that if α is a Bryuno number, then f is linearizable at the origin. Yoccoz showed that for $\lambda = e^{2\pi i \alpha}$ if α is not a Bryuno number, then $P_\lambda(z) = z^2 + \lambda z$ is not linearizable at the origin, that is, P_λ is linearizable at the origin if and only if α is a Bryuno number. Moreover the following theorem holds if α is of bounded type. Refer to [9] or [10].

Theorem 1.1 (Ghys-Douady-Herman-Shishikura-Świątek). If an irrational number $\alpha \in [0, 1]$ is of bounded type and $\lambda = e^{2\pi i \alpha}$, then the boundary of the Siegel disk Δ of P_λ centered at the origin is a quasicircle containing its critical point $-\lambda/2$.

Moreover if the irrational number α is of bounded type and $\lambda = e^{2\pi i \alpha}$, then the following holds:

(a) (Petersen). The Julia set $J(P_\lambda)$ of P_λ is locally connected and has measure zero.

(b) (McMullen). The Hausdorff dimension of $J(P_\lambda)$ is less than 2.

(c) (Graczyk-Jones). The Hausdorff dimension of $\partial \Delta$ is greater than 1.

Conversely, Petersen showed that if $\partial \Delta$ is a quasicircle containing the finite critical point $-\lambda/2$ of P_λ, then $\alpha \in [0, 1]$ is of bounded type. Zakeri extended Theorem 1.1 to the case of cubic polynomials.
Theorem 1.2 (Zakeri, [11]). Let P be a cubic polynomial with fixed point of multiplier $e^{2\pi i \alpha}$ at the origin. If an irrational number $\alpha \in [0, 1]$ is of bounded type, then the boundary of the Siegel disk Δ of P centered at the origin is a quasicircle containing one or both critical points.

Geyer showed the following theorem which is extended to some polynomials.

Theorem 1.3 (Geyer, [4]). Let $d \geq 1$ and let $P(z) = e^{2\pi i \alpha} z (1 + z/d)^d$. If an irrational number $\alpha \in [0, 1]$ is of bounded type, then the boundary of the Siegel disk Δ of P centered at the origin is a quasicircle containing its critical point $-d/(d+1)$.

Let $F_{\lambda, \mu}(z) = z(z + \lambda)/(\mu z + 1)$ with $\lambda \mu \neq 1$. The origin and the point at infinity are fixed points of $F_{\lambda, \mu}$ of multiplier λ and μ respectively. In the case that $\mu = 0$, $F_{\lambda, 0}(z) = P_\lambda(z)$. Therefore the quadratic rational function $F_{\lambda, \mu}$ is considered as a perturbation of the quadratic polynomial P_λ. In the case that $\lambda = e^{2\pi i \alpha}$ and α is irrational of bounded type, we show the following theorem which is a generalization of Theorem 1.1.

Theorem 1.4. If an irrational number $\alpha \in [0, 1]$ is of bounded type, $\lambda = e^{2\pi i \alpha}$ and $\mu \in \mathbb{D}$ with $\lambda \mu \neq 1$, then the boundary of the Siegel disk Δ of $F_{\lambda, \mu}$ centered at the origin is a quasicircle containing its critical point.

2 Cubic Blaschke products

2.1 Existence of cubic Blaschke products

We consider a cubic Blaschke product

$$B(z) = e^{2\pi i \theta} z \left(\frac{z - a}{1 - \overline{a} z} \right) \left(\frac{z - b}{1 - \overline{b} z} \right)$$

with $\overline{a} \neq 1$ and $0 < |a| \leq |b| < \infty$. The derivative B' of B is

$$B'(z) = \frac{e^{2\pi i \theta}}{(1 - \overline{a} z)^2 (1 - \overline{b} z)^2} \cdot g(z),$$

where

$$g(z) = \overline{a} \overline{b} z^4 - 2(\overline{a} + \overline{b}) z^3 + \left\{ 3 - |ab|^2 + |a + b|^2 \right\} z^2 - 2(a + b) z + ab.$$

So multipliers of fixed points $z = 0$ and $z = \infty$ are $\lambda = ab e^{2\pi i \theta}$ and $\mu = \overline{a} \overline{b} e^{-2\pi i \theta}$ respectively. Let c_1, c_2, $c_3 = 1/\overline{c}_2$ and $c_4 = 1/\overline{c}_1$ be critical points of B. Since
they are solutions of \(g(z) = 0 \), we obtain that

\[
g(z) = \bar{a} b (z - c_1)(z - c_2)(z - c_3)(z - c_4)
= \bar{a} b \left\{ z^4 - C_3 z^3 + C_2 z^2 - C_1 z + C_0 \right\},
\]

where

\[
C_3 = c_1 + \frac{1}{c_1} + c_2 + \frac{1}{c_2},
\]

\[
C_2 = \frac{c_1}{c_1} + \frac{c_2}{c_2} + \left(c_1 + \frac{1}{c_1} \right) \left(c_2 + \frac{1}{c_2} \right),
\]

\[
C_1 = \frac{c_1}{c_1} \left(c_2 + \frac{1}{c_2} \right) + \frac{c_2}{c_2} \left(c_1 + \frac{1}{c_1} \right),
\]

\[
C_0 = \frac{c_1 c_2}{c_1 c_2}.
\]

Comparing coefficients of two representations of \(g(z) \) implies that

\[
c_1 + \frac{1}{c_1} + c_2 + \frac{1}{c_2} = \frac{2(\bar{a} + \bar{b})}{\bar{a} \bar{b}}, \tag{1}
\]

\[
\frac{c_1}{c_1} + \frac{c_2}{c_2} + \left(c_1 + \frac{1}{c_1} \right) \left(c_2 + \frac{1}{c_2} \right) = \frac{3 - |ab|^2 + |a + b|^2}{\bar{a} \bar{b}}, \tag{2}
\]

\[
\frac{c_1}{c_1} \left(c_2 + \frac{1}{c_2} \right) + \frac{c_2}{c_2} \left(c_1 + \frac{1}{c_1} \right) = \frac{2(a + b)}{\bar{a} \bar{b}}, \tag{3}
\]

\[
\frac{c_1 c_2}{c_1 c_2} = \frac{ab}{\bar{a} \bar{b}}. \tag{4}
\]

Eliminating \(c_1 \) and \(\bar{c}_1 \) form equations (1), (2) and (4) gives that

\[
|a + b|^2 - 2 \left(c_2 + \frac{1}{c_2} \right) (\bar{a} + \bar{b})
- \left(\frac{\bar{c}_2}{c_2} \right) ab + \left\{ \left(c_2 + \frac{1}{c_2} \right)^2 - \frac{c_2}{\bar{c}_2} \right\} \bar{a} \bar{b} + 3 - |ab|^2 = 0 \tag{5}
\]
and eliminating \(c_1 \) and \(\bar{c}_1 \) form equations (1), (3) and (4) gives that
\[
\frac{c_2}{c_2} \left(c_2 + \frac{1}{\bar{c}_2} \right) ab + 2 \left(\frac{c_2}{\bar{c}_2} \right) (\bar{a} + \bar{b}) = \frac{c_2}{\bar{c}_2} \left(c_2 + \frac{1}{\bar{c}_2} \right) \bar{a} \bar{b} + 2(a + b). \tag{6}
\]
We obtain that
\[
|a + b|^2 - 4e^{2\pi i \varphi} (\bar{a} + \bar{b}) - e^{2\pi i (-2\varphi)} ab + 3e^{2\pi i 2\varphi} \bar{a} \bar{b} + 3 - |ab|^2 = 0 \tag{7}
\]
and
\[
e^{2\pi i (-2\varphi)} ab + e^{2\pi i \varphi} (\bar{a} + \bar{b}) = e^{2\pi i 2\varphi} \bar{a} \bar{b} + e^{2\pi i (-\varphi)} (a + b) \tag{8}
\]
by substituting \(c_2 = e^{2\pi i \varphi} \) into equations (5) and (6). Eliminating \(ab \) form equations (7) and (8) gives that
\[
|a + b|^2 - 3e^{2\pi i \varphi} (\bar{a} + \bar{b}) - e^{2\pi i (-\varphi)} (a + b) + 2e^{2\pi i 2\varphi} \bar{a} \bar{b} + 3 - |ab|^2 = 0. \tag{9}
\]
Let \(\zeta = a + b \). Then
\[
|\zeta|^2 - 3e^{2\pi i \varphi} \bar{\zeta} - e^{2\pi i (-\varphi)} \zeta + 2e^{2\pi i 2\varphi} \bar{a} \bar{b} + 3 - |ab|^2 = 0. \tag{10}
\]
The real part of the left side of the equation (10) is
\[
x^2 + y^2 - 4x \cos 2\pi \varphi - 4y \sin 2\pi \varphi + 2r \cos 2(\varphi + \theta + \omega) + 3 - r^2 = 0 \tag{11}
\]
and the imaginary part of the left side of the equation (10) is
\[
y \cos 2\pi \varphi - x \sin 2\pi \varphi + r \sin 2(\varphi + \theta + \omega) = 0, \tag{12}
\]
where \(\zeta = x + iy \) and \(\mu = \bar{a} b e^{-2\pi i \theta} = re^{2\pi i \omega} \). One of the solutions of simultaneous equations (11) and (12) are
\[
x = -r \cos 2\pi (3\varphi + \theta + \omega) + 3 \cos 2\pi \varphi
\]
and
\[
y = -r \sin 2\pi (3\varphi + \theta + \omega) + 3 \sin 2\pi \varphi,
\]
and hence
\[
\zeta = re^{2\pi i (3\varphi + \theta + \omega + 1/2)} + 3e^{2\pi i \varphi}
\]
satisfies the equation (10). Conversely, we show the following theorem.

Theorem 2.1. Let \(\mu \in re^{2\pi i \omega} \in \mathbb{D} \) and let \(a = a(\theta, \varphi) \) and \(b = b(\theta, \varphi) \) with \(|a| \leq |b| \) be complex numbers satisfying relations \(a + b = re^{2\pi i (3\varphi + \theta + \omega + 1/2)} + 3e^{2\pi i \varphi} \) and \(ab = re^{-2\pi i (\theta + \omega)} \), that is, \(a \) and \(b \) are the solutions of the equation
\[
\xi^2 - \left\{ re^{2\pi i (3\varphi + \theta + \omega + 1/2)} + 3e^{2\pi i \varphi} \right\} \xi + re^{-2\pi i (\theta + \omega)} = 0, \tag{11}
\]
where \((\theta, \varphi) \in [0, 1]^2\). Then the following holds:
(a) In the case that \(r = 0 \), solutions of the equation (†) are \(a = 0 \) and \(b = 3e^{2\pi i\varphi} \).

(b) In the case that \(0 < r < 1 \), the equation (†) does not have double roots. Moreover \(0 < |a| < 1 < |b| < \infty \).

(c) In the case that \(r = 1 \) and \(2\varphi + \theta + \omega \equiv 0 \pmod{1} \), the equation (†) has double roots and \(a = b = e^{2\pi i\varphi} \).

(d) In the case that \(r = 1 \) and \(2\varphi + \theta + \omega \not\equiv 0 \pmod{1} \), the equation (†) does not have double roots. Moreover \(0 < |a| < 1 < |b| < \infty \).

(e) In the case (a), (b) or (d),

\[
B(z) = B_{\theta,\varphi}(z) = e^{2\pi i\theta} z \left(\frac{z - a}{1 - \bar{a}z} \right) \left(\frac{z - b}{1 - \bar{b}z} \right)
\]

is a Blaschke product of degree 3 and the point at infinity is a fixed point of \(B \) with multiplier \(\mu \). Moreover \(z = e^{2\pi i\varphi} \) is a critical point of \(B \) and the other two critical points of \(B \) are in \(\hat{\mathbb{C}} \setminus \mathbb{T} \), where \(\mathbb{T} \) is the unit circle. In this case, \(B|_{\mathbb{T}} : T \to \mathbb{T} \) is a homeomorphism.

Proof of (a). It is clear.

Proof of (b). Since \(0 < r < 1 \), we obtain that \(|a + b| \geq |r - 3| > 2 \) and \(|a||b| < 1 \). In this case, either \(0 < |a| < 1 \leq |b| < \infty \) or \(0 < |a| \leq |b| \leq 1 \) hold. If \(0 < |a| \leq |b| \leq 1 \), then

\[
2 < |a + b| \leq |a| + |b| \leq 2.
\]

This is a contradiction and hence the situation \(0 < |a| < 1 \leq |b| < \infty \) happens. If \(|b| = 1 \), then

\[
2 < |a + b| \leq |a| + |b| = |a| + 1 \leq 2.
\]

This is a contradiction. Therefore the equation (†) does not have double roots and \(0 < |a| < 1 < |b| < \infty \).

Proof of (c). If \(r = 1 \) and \(2\varphi + \theta + \omega \equiv 0 \pmod{1} \), then \(a + b = 2e^{2\pi i\varphi} \) and \(ab = e^{2\pi i:2\varphi} \). Therefore the equation (†) has double roots and \(a = b = e^{2\pi i\varphi} \).

Proof of (d). Since \(|a||b| = r = 1 \), either \(0 < |a| < 1 < |b| < \infty \) or \(|a| = |b| = 1 \) hold. If \(|a| = |b| = 1 \), then

\[
2 = |r - 3| \leq |a + b| \leq |a| + |b| = 2
\]

and hence \(|a + b| = 2 \). On the other hand,

\[
|a + b| = |r e^{2\pi i(3\varphi+\theta+\omega+1/2)} + 3e^{2\pi i\varphi}| = |e^{2\pi i(2\varphi+\theta+\omega)} - 3|.
\]
So we obtain that \(|e^{2\pi i (2\varphi + \theta + \omega)} - 3| = 2\) and hence \(2\varphi + \theta + \omega \equiv 0 \pmod{1}\). This contradicts that \(2\varphi + \theta + \omega \not\equiv 0 \pmod{1}\). Therefore the equation (1) does not have double roots and \(0 < |a| < 1 < |b| < \infty\).

Proof of (e). In the case that \(r = 0\), critical points of \(B\) are \(z = 0, e^{2\pi i \varphi}\) and \(\infty\). Therefore the assertion holds. We consider the case that \(0 < r \leq 1\) below.

Let
\[
f(z) = f_{\theta, \varphi}(z) = \left(\frac{z - a}{1 - \bar{a}z}\right) \left(\frac{z - b}{1 - \bar{b}z}\right) = \frac{1}{ab} \cdot \frac{z^2 - (a + b)z + ab}{z^2 - \left(\frac{\bar{a} + \bar{b}}{\bar{a}b}\right) z + \frac{1}{\bar{a}b}}.
\]

The necessary and sufficient condition that the degree of the Blaschke product \(B\) be 3 is that the function \(f\) be not constant. So the necessary and sufficient condition that the degree of the Blaschke product \(B\) be 1 is that the function \(f\) be constant, that is,
\[
\frac{z^2 - (a + b)z + ab}{z^2 - \left(\frac{\bar{a} + \bar{b}}{\bar{a}b}\right) z + \frac{1}{\bar{a}b}} = 1 \tag{13}
\]
for all \(z \in \mathbb{C}\). Comparing coefficients of the numerator and the denominator of (13) implies that \(\bar{a}\bar{b}(a + b) = \bar{a} + \bar{b}\) and \(|ab| = 1\). In the case that \(0 < r < 1\), the degree of the Blaschke product \(B\) is 3 since \(|ab| = r < 1\). In the case that \(r = 1\),
\[
\bar{a}\bar{b}(a + b) - (\bar{a} + \bar{b}) = -e^{-2\pi i (3\varphi + \theta + \omega)} \left(e^{2\pi i (2\varphi + \theta + \omega)} - 1\right)^3.
\]
Therefore in the case \(r = 1\) and \(2\varphi + \theta + \omega \not\equiv 0 \pmod{1}\), the degree of the Blaschke product \(B\) is 3. It is clear that the point at infinity is a fixed point of \(B\) with multiplier \(\mu\). Moreover it is clear that \(g(e^{2\pi i \varphi}) = 0\) and hence \(z = e^{2\pi i \varphi}\) is a critical point of \(B\), where
\[
B'(z) = \frac{e^{2\pi i \theta}}{(1 - \bar{a}z)^2(1 - \bar{b}z)^2} \cdot g(z)
\]
and
\[
g(z) = \bar{a}\bar{b}z^4 - 2(\bar{a} + \bar{b})z^3 + \left\{3 - |ab|^2 + |a + b|^2\right\} z^2 - 2(a + b)z + ab.
\]
Finally we show that the other two critical points of \(B\) are in \(\hat{\mathbb{C}} \setminus T\). we factor \(r^{-1}e^{-2\pi i (\theta + \omega)}g(z)\) as
\[
\frac{1}{r} \cdot e^{-2\pi i (\theta + \omega)} \cdot g(z) = (z - e^{2\pi i \varphi})^2 \cdot h(z),
\]
where
\[h(z) = z^2 + 2e^{2\pi i \varphi} \left\{ e^{-2\pi i (2\varphi + \theta + \omega)} - \frac{3}{r} e^{-2\pi i (2\varphi + \theta + \omega)} + 1 \right\} z + e^{-2\pi i (\varphi + \theta + \omega)}. \]

Let
\[h_1(z) = 2e^{2\pi i \varphi} \left\{ e^{-2\pi i (2\varphi + \theta + \omega)} - \frac{3}{r} e^{-2\pi i (2\varphi + \theta + \omega)} + 1 \right\} z \]
and
\[h_2(z) = z^2 + e^{-2\pi i (\varphi + \theta + \omega)}. \]

For \(z \in T \), \(|h_2(z)| \leq 2 \). In the case that \(0 < r < 1 \), we obtain that
\[|h_1(z)| \geq 2 \left| \frac{3}{r} - 1 - 1 \right| > 2 \]
on \(T \). In the case that \(r = 1 \), we obtain that
\[|h_1(z)| = 2 \left| e^{-2\pi i (2\varphi + \theta + \omega)} - 3e^{-2\pi i (2\varphi + \theta + \omega)} + 1 \right| \]
\[= 2 \left\{ e^{-2\pi i (2\varphi + \theta + \omega)} + 1 \right\}^2 - 5e^{-2\pi i (2\varphi + \theta + \omega)} \]
\[\geq 2 \left(5 - \left| e^{-2\pi i (2\varphi + \theta + \omega)} + 1 \right|^2 \right) > 2 \]
on \(T \), since \(2\varphi + \theta + \omega \neq 0 \) (mod 1). By Rouché’s theorem, the number of roots of \(h(z) = h_1(z) + h_2(z) \) on \(D \) is one since \(|h_1(z)| > 2 \geq |h_2(z)| \) on \(T \) and the number of roots of \(h_1(z) \) on \(D \) is one. So one of critical points of \(B \) other than \(z = e^{2\pi i \varphi} \) is in \(D \). Since critical points of a Blaschke product are symmetric with respect to the unit circle, the other one critical point of \(B \) is in \(\hat{\mathbb{C}} \setminus \mathbb{D} \). In this case, the inverse image \(B^{-1}(T) \) of the unit circle \(T \) is the union of \(T \) and a figure eight which crosses at \(z = e^{2\pi i \varphi} \). Refer to Figure 1. Therefore \(B|_T : T \to T \) is a homeomorphism. \(\square \)

Remark 2.2. Two complex numbers \(a = a(\theta, \varphi) \) and \(b = b(\theta, \varphi) \) satisfy that
\[a(\theta + 1, \varphi) = a(\theta, \varphi) = a(\theta, \varphi + 1) \]
and
\[b(\theta + 1, \varphi) = b(\theta, \varphi) = b(\theta, \varphi + 1). \]
2.2 Rotation numbers of cubic Blaschke products

Let \(f : \mathbb{T} \to \mathbb{T} \) be an orientation preserving homeomorphism and let \(\tilde{f} : \mathbb{R} \to \mathbb{R} \) be a lift of \(f \) via \(x \mapsto e^{2\pi i x} \) which satisfies \(\tilde{f}(x + 1) = \tilde{f}(x) + 1 \) for all \(x \in \mathbb{R} \). A lift \(\tilde{f} \) of \(f \) is unique up to addition of an integer constant. The rotation number \(\rho(\tilde{f}) \) of \(\tilde{f} \) is defined as

\[
\rho(\tilde{f}) = \lim_{n \to \infty} \frac{\tilde{f}^n(x)}{n},
\]

which is independent of \(x \in \mathbb{R} \). The rotation number \(\rho(f) \) is defined as the residue class of \(\rho(\tilde{f}) \) modulo \(\mathbb{Z} \). Poincaré showed that the rotation number is rational with denominator \(q \) if and only if \(f \) has a periodic point with period \(q \). The following theorem is important (see [5]).

Theorem 2.3. Let \(\mathcal{F} \) be the set of all orientation preserving homeomorphisms form the unit circle onto itself with the topology of uniform conver-
gence. Then the rotation number function \(\rho : \mathcal{F} \to \mathbb{R}/\mathbb{Z} \) defined as \(f \mapsto \rho(f) \) is continuous.

If the cubic Blaschke product \(B_{\theta, \varphi} \) as in Theorem 2.1 is an orientation preserving homeomorphism on \(\mathbb{T} \), the rotation number function \((\theta, \varphi) \mapsto \rho(B_{\theta, \varphi}|_{\mathbb{T}}) \) is continuous. In order to show that \(B_{\theta, \varphi}|_{\mathbb{T}} : \mathbb{T} \to \mathbb{T} \) is an orientation preserving homeomorphism, we show the following lemma.

Lemma 2.4. Let \(a(\theta, \varphi) \) and \(b(\theta, \varphi) \) be as in Theorem 2.1. Then for any \((\theta, \varphi) \in [0, 1]^2 \), a loop \(\Gamma_1[\theta, \varphi] : [0, 1] \to \mathbb{T} \) defined as

\[
\Gamma_1[\theta, \varphi](x) = \left(\frac{e^{2\pi i x} - a(\theta, \varphi)}{1 - a(\theta, \varphi)e^{2\pi i x}} \right) \left(\frac{e^{2\pi i x} - b(\theta, \varphi)}{1 - b(\theta, \varphi)e^{2\pi i x}} \right)
\]

is homotopic to a constant loop \(x \mapsto e^{2\pi i \cdot 2\varphi} \).

Proof. Note that \(\Gamma_1[\theta, \varphi](x) = e^{2\pi i \cdot 2\varphi} \) for all \(x \in \mathbb{R} \) if \(r = 1 \) and \(2\varphi + \theta + \omega \equiv 0 \) (mod 1). Let

\[
H_1[\theta, \varphi](x, t) = \left(\frac{e^{2\pi i (1-t)x + t\varphi} - a(\theta, \varphi)}{1 - a(\theta, \varphi)e^{2\pi i (1-t)x + t\varphi}} \right) \left(\frac{e^{2\pi i (1-t)x + t\varphi} - b(\theta, \varphi)}{1 - b(\theta, \varphi)e^{2\pi i (1-t)x + t\varphi}} \right).
\]

Then \(H_1[\theta, \varphi](x, 0) = \Gamma_1[\theta, \varphi](x) \) and \(H_1[\theta, \varphi](x, 1) = e^{2\pi i \cdot 2\varphi} \). Therefore \(H_1[\theta, \varphi] \) is a homotopy between the loop \(\Gamma_1[\theta, \varphi] \) and the constant loop \(\theta \mapsto e^{2\pi i \cdot 2\varphi} \). \(\square \)

The following two lemmas play important roles in the proof of Theorem 2.7.

Lemma 2.5. Let \(a(\theta, \varphi) \) and \(b(\theta, \varphi) \) be as in Theorem 2.1. Then for any \(z \in \mathbb{T} \) and \(\varphi \in [0, 1] \), a loop \(\Gamma_2[z, \varphi] : [0, 1] \to \mathbb{T} \) defined as

\[
\Gamma_2[z, \varphi](\theta) = \left(\frac{z - a(\theta, \varphi)}{1 - a(\theta, \varphi)z} \right) \left(\frac{z - b(\theta, \varphi)}{1 - b(\theta, \varphi)z} \right)
\]

is homotopic to a constant loop \(\theta \mapsto e^{2\pi i \cdot 2\varphi} \).

Proof. Note that \(\Gamma_2[e^{2\pi i \varphi}, \varphi](\theta) = e^{2\pi i \cdot 2\varphi} \) for all \(\theta \in [0, 1] \) and hence \(\Gamma_2[e^{2\pi i \varphi}, \varphi] \) is a constant loop \(e^{2\pi i \cdot 2\varphi} \). Let

\[
H_2[z, \varphi](\theta, t) = \left(\frac{z - a(\theta, \varphi, t)}{1 - a(\theta, \varphi, t)z} \right) \left(\frac{z - b(\theta, \varphi, t)}{1 - b(\theta, \varphi, t)z} \right),
\]

where

\[
a(\theta, \varphi, t) = (1-t)a(\theta, \varphi) + te^{2\pi i \varphi}
\]

and

\[
b(\theta, \varphi, t) = (1-t)b(\theta, \varphi) + te^{2\pi i \varphi}.
\]

Then \(H_2[z, \varphi](\theta, 0) = \Gamma_2[z, \varphi](\theta) \) and \(H_2[z, \varphi](\theta, 1) = e^{2\pi i \cdot 2\varphi} \). Therefore \(H_2[z, \varphi] \) is a homotopy between the loop \(\Gamma_2[z, \varphi] \) and the constant loop \(\theta \mapsto e^{2\pi i \cdot 2\varphi} \). \(\square \)
Lemma 2.6. Let $a(\theta, \varphi)$ and $b(\theta, \varphi)$ be as in Theorem 2.1. Then for any $z \in \mathbb{T}$ and $\theta \in [0, 1]$, a loop $\Gamma_3[z, \theta] : [0, 1] \to \mathbb{T}$ defined as

$$\Gamma_3[z, \theta](\varphi) = \left(\frac{z - a(\theta, \varphi)}{1 - a(\theta, \varphi)z} \right) \left(\frac{z - b(\theta, \varphi)}{1 - b(\theta, \varphi)z} \right)$$

is homotopic to a loop $\varphi \mapsto e^{2\pi i \cdot 2\varphi}$.

Proof. Note that $\Gamma_3[e^{2\pi i \varphi}, \theta](\varphi) = e^{2\pi i \cdot 2\varphi}$. Let $H_3[z, \theta](\varphi, t) = \left(\frac{z - a(\theta, \varphi, t)}{1 - a(\theta, \varphi, t)z} \right) \left(\frac{z - b(\theta, \varphi, t)}{1 - b(\theta, \varphi, t)z} \right)$, where

$$a(\theta, \varphi, t) = (1 - t)a(\theta, \varphi) + te^{2\pi i \varphi}$$

and

$$b(\theta, \varphi, t) = (1 - t)b(\theta, \varphi) + te^{2\pi i \varphi}.$$

Then $H_3[z, \theta](\varphi, 0) = \Gamma_3[z, \theta](\varphi)$ and $H_3[z, \theta](\varphi, 1) = e^{2\pi i \cdot 2\varphi}$. Therefore $H_3[z, \theta]$ is a homotopy between the loop $\Gamma_3[z, \theta]$ and the the loop $\varphi \mapsto e^{2\pi i \cdot 2\varphi}$. □

Let

$$\Gamma(x, \theta, \varphi) = \left(\frac{e^{2\pi i x} - a(\theta, \varphi)}{1 - a(\theta, \varphi)e^{2\pi i x}} \right) \left(\frac{e^{2\pi i x} - b(\theta, \varphi)}{1 - b(\theta, \varphi)e^{2\pi i x}} \right).$$

Then $\Gamma(x, \theta, \varphi) = \Gamma_1[\theta, \varphi](x) = \Gamma_2[e^{2\pi i x}, \varphi](\theta) = \Gamma_3[e^{2\pi i x}, \theta](\varphi)$. Lemma 2.4 and Lemma 2.5 imply that

$$\arg(\Gamma(x + 1, \theta, \varphi)) = \arg(\Gamma(x, \theta, \varphi)) = \arg(\Gamma(x, \theta + 1, \varphi))$$

and Lemma 2.6 implies that

$$\frac{1}{2\pi} \arg(\Gamma(x, \theta, \varphi + 1)) = \frac{1}{2\pi} \arg(\Gamma(x, \theta, \varphi)) + 2.$$

Theorem 2.7. Let $\alpha \in [0, 1]$ and let $\mu = re^{2\pi i \omega} \in \mathbb{D}$, $a = a(\theta, \varphi)$ and $b = b(\theta, \varphi)$ be as in Theorem 2.1. Then for the Blaschke product

$$B_{\theta, \varphi}(z) = e^{2\pi i \theta} z \left(\frac{z - a}{1 - az} \right) \left(\frac{z - b}{1 - bz} \right),$$

$B_{\theta, \varphi}|_T : \mathbb{T} \to \mathbb{T}$ is an orientation preserving homeomorphism. Moreover

(a) In the case that $0 \leq r < 1$, there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that $\rho(B_{\theta_0, \varphi_0}|_T) = \alpha$.

(b) In the case that $r = 1$, if $\alpha + \omega \not\equiv 0 \pmod{1}$, then there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that $\rho(B_{\theta_0, \varphi_0}|_T) = \alpha$ and $2\varphi_0 + \theta_0 + \omega \not\equiv 0 \pmod{1}$.

Proof. In the case that $r = 1$ and $2\varphi + \theta + \omega \equiv 0 \pmod{1}$, $B_{\theta, \varphi}|_T : T \to T$ is an orientation preserving homeomorphism and its rotation number satisfies that $\rho(B_{\theta, \varphi}|_T) \equiv -\omega \pmod{1}$. In the other cases, we consider a lift $\tilde{B}_{\theta, \varphi}(x) = \theta + x + \frac{1}{2\pi} \arg(\Gamma(x, \theta, \varphi))$ of $B_{\theta, \varphi}|_T : T \to T$ via $x \mapsto e^{2\pi ix}$. By Lemma 2.4,

$$\tilde{B}_{\theta, \varphi}(x + 1) = \theta + x + 1 + \frac{1}{2\pi} \arg(\Gamma(x + 1, \theta, \varphi)) = \tilde{B}_{\theta, \varphi}(x) + 1$$

for all $x \in \mathbb{R}$. This implies that $B_{\theta, \varphi}|_T : T \to T$ is an orientation preserving homeomorphism. Consequently the rotation number of $\rho(B_{\theta, \varphi})$ is well defined. By Lemma 2.5, we obtain that $\tilde{B}_{1, \varphi}^n(x) = \tilde{B}_{0, \varphi}^n(x) + n$ and hence

$$\rho(\tilde{B}_{1, \varphi}) = \rho(\tilde{B}_{0, \varphi}) + 1. \quad (14)$$

Moreover by Lemma 2.6, we obtain that $\tilde{B}_{\theta, 1}^n(x) = \tilde{B}_{\theta, 0}^n(x) + 2n$ and hence

$$\rho(\tilde{B}_{\theta, 1}) = \rho(\tilde{B}_{\theta, 0}) + 2. \quad (15)$$

These two equation (14) and (15) imply that

$$\rho(\tilde{B}_{1, 1}) = \rho(\tilde{B}_{0, 0}) + 3.$$

Therefore in the case that $0 \leq r < 1$, there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that

$$\alpha = \rho(B_{\theta_0, \varphi_0}|_T) \equiv \rho(\tilde{B}_{\theta_0, \varphi_0}) \pmod{1}$$

since the rotation number function function $(\theta, \varphi) \mapsto \rho(B_{\theta, \varphi}|_T)$ is continuous. In the case that $r = 1$, if $2\varphi + \theta + \omega \equiv 0 \pmod{1}$, then $\rho(B_{\theta, \varphi}|_T) \equiv -\omega \pmod{1}$. Hence if $\alpha + \omega \not\equiv 0 \pmod{1}$, then there exists $(\theta_0, \varphi_0) \in [0, 1]^2$ such that

$$\alpha = \rho(B_{\theta_0, \varphi_0}|_T) \equiv \rho(\tilde{B}_{\theta_0, \varphi_0}) \pmod{1}$$

and $2\varphi_0 + \theta_0 + \omega \not\equiv 0 \pmod{1}$.

Remark 2.8. By theorem 2.1, the degree of B_{θ_0, φ_0} is 3.
Some Blaschke products and quadratic rational functions

Figure 3: The Julia set of some cubic Blaschke product $B_{\theta,\varphi}$ (left) and “the filled-in Julia set” of some modified Blaschke product $B_{\theta,\varphi}$ (right).

3 Quadratic rational functions with Siegel disks

In this section, we show Theorem 1.4. Let $f : \mathbb{R} \to \mathbb{R}$ be a homeomorphism. The map f is k-quasisymmetric if there exists $k \geq 1$ such that

$$\frac{1}{k} \leq \left| \frac{f(x+t) - f(x)}{f(x) - f(x-t)} \right| \leq k$$

for all $x \in \mathbb{R}$ and all $t \geq 0$. A homeomorphism $h : T \to T$ is k-quasisymmetric if its lift $\tilde{h} : \mathbb{R} \to \mathbb{R}$ is k-quasisymmetric. By the theorem of Beurling and Ahlfors, any k-quasisymmetric homeomorphism $f : \mathbb{R} \to \mathbb{R}$ is extended to a K-quasiconformal map $F : \mathbb{H} \to \mathbb{H}$, where \mathbb{H} is the upper half plain (More precisely $F : \mathbb{C} \to \mathbb{C}$). The dilatation K of F depends only on k. Therefore if a homeomorphism $h : T \to T$ is k-quasisymmetric, then we can extend h to a K-quasiconformal map $H : D \to D$ whose dilatation depends only on k.

Theorem 3.1 (Herman-Świątek). The rotation number $\rho(f)$ of a real analytic orientation preserving homeomorphism $f : T \to T$ is of constant type if and only if f is quasisymmetrically linearizable, that is, there exists a quasisymmetric homeomorphism $h : T \to T$ such that $h \circ f \circ h^{-1}(z) = e^{2\pi i \rho(f)}z$.

Let $F_{\lambda,\mu}(z) = z(z + \lambda)/(\mu z + 1)$ with $\lambda \mu \neq 1$. Any quadratic rational function with fixed points of multipliers λ and μ with $\lambda \mu \neq 1$ is conjugate to $F_{\lambda,\mu}$ (see [7]).

Proof of Theorem 1.4. By Theorem 2.7, there exist $(\theta, \varphi) \in [0, 1]^2$ such that the degree of $B_{\theta,\varphi}$ is 3 and $\rho(B_{\theta,\varphi}|_T) = \alpha$. Since α is of bounded type, there exists a quasisymmetric homeomorphism $h : T \to T$ such that $h \circ B_{\theta,\varphi}|_T \circ h^{-1}(z) = R_{\alpha}(z) = e^{2\pi i \alpha}z$. By the theorem of Beurling and Ahlfors, h has a
Figure 4: Golden Siegel disks of $F_{\lambda, \mu}$ centered at the origin, where $\lambda = e^{2\pi i (\sqrt{5} - 1)/2}$ and $\mu = re^{2\pi i (\sqrt{5} - 1)/2}$. In the case $r = 1$, the point at infinity is the center of another golden Siegel disk.
quasiconformal extension $H : \overline{D} \to \overline{D}$ with $H(0) = 0$. We define a new map $\mathfrak{B}_{\theta, \varphi}$ as

\[
\mathfrak{B}_{\theta, \varphi} = \begin{cases}
B_{\theta, \varphi} & \text{on } \hat{\mathbb{C}} \setminus \mathbb{D}, \\
H^{-1} \circ R_{\alpha} \circ H & \text{on } \mathbb{D}.
\end{cases}
\]

The map $\mathfrak{B}_{\theta, \varphi}$ is quasiregular on $\hat{\mathbb{C}}$ since T is an analytic curve. Moreover $\mathfrak{B}_{\theta, \varphi}$ is a degree 2 branched covering of $\hat{\mathbb{C}}$. We define a conformal structure $\sigma_{\theta, \varphi}$ as

\[
\sigma_{\theta, \varphi} = \begin{cases}
H^* \sigma_0 & \text{on } \mathbb{D}, \\
\left(\mathfrak{B}_{\theta, \varphi}^{-n} \right) \sigma_0 & \text{on } \mathfrak{B}_{\theta, \varphi}^{-n} (\mathbb{D}) \setminus \mathbb{D} \text{ for all } n \in \mathbb{N}, \\
\sigma_0 & \text{on } \hat{\mathbb{C}} \setminus \bigcup_{n=1}^{\infty} \mathfrak{B}_{\theta, \varphi}^{-n} (\mathbb{D}),
\end{cases}
\]

where σ_0 is the standard conformal structure on $\hat{\mathbb{C}}$. The conformal structure $\sigma_{\theta, \varphi}$ is invariant under $\mathfrak{B}_{\theta, \varphi}$ and its maximal dilatation is the dilatation of H since H is quasiconformal and $B_{\theta, \varphi}$ is holomorphic. By the measurable Riemann mapping theorem, there exists a quasiconformal homeomorphism $\Psi : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that $\Psi^* \sigma_0 = \sigma_{\theta, \varphi}$. Therefore $\Psi \circ \mathfrak{B}_{\theta, \varphi} \circ \Psi^{-1}$ is a quadratic rational map. We normalize Ψ by $\Psi(0) = 0$, $\Psi(\frac{1}{\bar{b}}) = -1/\mu$ and $\Psi(\infty) = \infty$. Therefore we obtain that $F_{\lambda, \mu} = \Psi \circ \mathfrak{B}_{\theta, \varphi} \circ \Psi^{-1}$ since multipliers of fixed points are invariant under conjugation. The quadratic rational map $F_{\lambda, \mu}$ has a Siegel disk $\Delta = \Psi(\mathbb{D})$ with a critical point $\Psi(e^{2\pi i \varphi}) \in \partial \Delta$. Moreover $\partial \Delta = \Psi(T)$ is a quasicircle since Ψ is quasiconformal. \hfill \Box

ACKNOWLEDGEMENTS. I would like to thank professor Toshihiro Nakanishi for many helpful discussions.

References

Received: May 28, 2007