Subschemes of Multi-Projective Spaces and the Generators of Their Multi-Homogeneous Ideal

E. Ballico

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Let $Y \subset \Pi := \mathbb{P}^{n_1} \times \ldots \times \mathbb{P}^{n_k}$ be a closed subscheme and F a vector bundle on Π. Here we give Castelnuovo-Mumford’s style results on the multi-degrees of generators of the multi-graded module $\bigoplus(a_1,\ldots,a_k)H^0(\Pi, \mathcal{I}_Y \otimes F(a_1,\ldots,a_k))$.

Mathematics Subject Classification: 14N05; 13D02; 14A05

Keywords: multi-projective space; multi-homogeneous ideal

1. Introduction

Fix integers $k \geq 2$, $n_i > 0$, $1 \leq i \leq k$, and an infinite field K. Let $Z \subset \Pi := \mathbb{P}^{n_1} \times \ldots \times \mathbb{P}^{n_k}$ be a closed subscheme. Choose homogeneous coordinates $x_{i,j}$, $1 \leq i \leq k$, $0 \leq j \leq n_i$ of each factor of Π. Let e_i, $1 \leq i \leq k$ denote the basic vector $(0,\ldots,1,\ldots,0)$ of \mathbb{N}^k. Set $\deg(x_{i,j}) = e_i$ for all i,j. With these degrees the polynomial ring $R := K[x_{1,0},\ldots,x_{k,n_k}]$ is an \mathbb{N}^k-graded ring which will be called the multi-graded ring of Π ([2]). For any $a = (a_1,\ldots,a_k) \in \mathbb{N}^k$ the K-vector space $H^0(\mathcal{O}_\Pi(a))$ is the set of all $f \in R$ with multi-degree a. For any $a = (a_1,\ldots,a_k) \in \mathbb{Z}^k$ and $b = (b_1,\ldots,b_k) \in \mathbb{Z}^k$ we will write $a \leq b$ (resp. $a \geq b$) if and only if $a_i \leq b_i$ (resp. $a_i \geq b_i$) for all i.

To extend some of the results of [2] we will first prove some general results (see Theorem 1 and Proposition 1).

Theorem 1. Let Y be an integral projective variety, $Z \subset Y$ a zero-dimensional subscheme, M, R spanned line bundles on Y and F a coherent sheaf on Y which is locally free outside Z_{red}. Let $V \subseteq H^0(Y,M)$ (resp. $W \subseteq H^0(Y,R)$) be a linear subspace spanning M (resp. R). Let $\mu_W : W \otimes H^0(Y,F \otimes M) \to H^0(Y,F \otimes M \otimes R)$ and $\mu : V \otimes H^0(Y,\mathcal{I}_Z \otimes F \otimes R) \oplus W \otimes H^0(Y,\mathcal{I}_Z \otimes F \otimes M) \to H^0(Y,\mathcal{I}_Z \otimes A \otimes M \otimes R)$ denote the multiplication maps. Assume

1The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
\[h^1(Y, \mathcal{I}_Z \otimes F \otimes R \otimes M) = 0, \quad h^1(Y, \mathcal{I}_Z \otimes F \otimes M \otimes R^*) = 0 \] and that \(\mu_W \) is surjective. Then \(\mu \) is surjective.

Remark 1. Notice that in the statement of Theorem 1 we allow the case \(M = R \). Hence Theorem 1 and Proposition 1 below cover both [2], Theorem 3, and [2], Theorem 7, and extend them to the case in which \(Z \) is not reduced.

Then we will prove the following result on higher dimensional subvarieties of \(\Pi \).

Theorem 2. Let \(T \subset \Pi \) be a pure \(c \)-dimensional subscheme, \(0 < c < \sum_{i=1}^{k} n_k \).
Let \(F \) be a locally free sheaf on \(\Pi \) and \(d \) such that \(h^i(\Pi, F(u)) = h^i(T, F(u)|T) = 0 \) for all \(i > 0 \) and all \(u \geq d \). Let \(\Pi' \subset \Pi \) be the multi-projective space spanned by \(T \). Assume that for every projection \(\alpha \) of \(\Pi' \) onto one of its factors, say \(\mathbf{P}^s \), \(\dim(\alpha(E)) = \min\{s, c\} \) for all irreducible components \(E \) of \(T_{\text{red}} \).
Fix any \(a = (a_1, \ldots, a_k) \geq d \) such that \(h^i(\Pi, T \otimes F(m)) = 0 \) for all pairs \((t, m = (m_1, \ldots, m_k)) \) such that \(1 \leq t \leq c + 1 \) and \(a_i - t + 1 \leq m_i \leq a_i \) for all \(1 \leq i \leq k \). Then the \(\mathbb{R}\)-module \(\bigoplus_{x \in \mathbf{Z}} H^0(\Pi, T \otimes F(h)) \) is generated by its components with multi-degree \(b = (b_1, \ldots, b_k) \) such that \(b_i \leq a_i + c + 1 \) for all \(1 \leq i \leq c + 1 \).

2. Proofs and Proposition 1.

Proposition 1. Fix an integer \(t \geq 0 \). Let \(Y \) be an integral projective variety, \(Z \subset Y \) a zero-dimensional subscheme, a spanned line bundle \(M \) on \(Y \) and \(F \) a coherent sheaf on \(Y \) which is locally free at each point of \(Z_{\text{red}} \) and \(h^1(Y, F \otimes M^\otimes z) = 0 \) for all \(z \geq t + 1 \). Set \(V := H^0(Y, M) \). Fix a general \(D \in |M| \) and let \(W \) be the image of \(V \) in \(H^0(D, M|D) \).
For all integers \(x \) let \(\mu_x : V \otimes H^0(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes x) \rightarrow H^0(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes(x+1)) \) denote the multiplication map. Assume \(h^1(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes x) = 0 \) for \(x = t, t+1 \) and that for all integers \(x \geq t \) the multiplication maps \(\alpha_x : V \otimes H^0(Y, A \otimes M^\otimes x) \rightarrow H^0(Y, A \otimes M^\otimes(x+1)) \) and \(\beta_x : W \otimes H^0(D, A \otimes M^\otimes x|D) \rightarrow H^0(D, A \otimes M^\otimes(x+1)|D) \) is surjective. Then \(h^2(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes x) = 0 \) for all \(x \geq t + 2 \) and \(\mu_x \) is surjective for all \(x \geq t + 1 \).

Proof. By induction on \(t \) it is sufficient to do the case \(x = t+2 \) of the vanishing statement and the surjectivity of \(\mu_{t+1} \). Since \(M \) is spanned, \(D \) is general and \(Z \) is zero-dimensional, \(D \cap Z_{\text{red}} = \emptyset \). Hence for all integers \(y \) there is an exact sequence

\[
0 \rightarrow \mathcal{I}_Z \otimes F \otimes M^\otimes(y-1) \rightarrow \mathcal{I}_Z \otimes F \otimes M^\otimes y \rightarrow (F \otimes M^\otimes y)|D \rightarrow 0
\]

From (1) and induction on \(x \) we get the vanishing statement. Now we will prove that \(\mu_{t+1} \) is surjective. Let \(f \in H^0(Y, M) \) be an equation of \(D \). Fix \(u \in H^0(Y, \mathcal{I}_Z \otimes F \otimes M^\otimes t+2) \) and consider \(u|D \).
Since \(\beta_{t+1} \) is surjective, there are \(w_i \in W \) and \(u_i \in H^0(D, A \otimes M^\otimes(t+1)|D) \) such that \(u|D = \sum w_i u_i \). Since \(W \) is the image of \(V \) and \(h^1(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes(t+1)) = 0 \), there are \(v_i \in V \) and \(a_i \in H^0(Y, \mathcal{I}_Z \otimes A \otimes M^\otimes t+2) \) such that \(v_i|D = w_i \) and \(a_i|D = u_i \). Hence
Since $c(f, h_b) = 1$ and each E_i of E of $F \subset W$, the surjectivity of μ_W gives the surjectivity of the multiplication map $\mu_{W,D} : W_D \otimes H^0(D, (F|D) \otimes (M|D)) \rightarrow H^0(D, (F|D) \otimes (M|D) \otimes (R|D))$. Thus there are finitely many $A_i \in W_D$ and $B_i \in H^0(D, (F|D) \otimes (M|D) \otimes (R|D))$ such that $u|D = \sum_i A_i B_i$. Take $A'_i \in W$ such that $A'_i|D = A_i$. Since $h^1(Y, \mathcal{I}_Z \otimes F \otimes M \otimes R^*) = 0$, there is $B'_i \in H^0(Y, \mathcal{I}_Z \otimes F \otimes M)$ such that $B'_i|D = B_i$. Hence $(u - \sum_i A'_i B'_i)|D = 0$. Since $h^1(Y, \mathcal{I}_Z \otimes F \otimes R \otimes M^*) = 0$, there is $G \in H^0(Y, \mathcal{I}_Z \otimes F \otimes R)$ such that $u - \sum_i A'_i B'_i = fG$ (use (2) with $\alpha = 0$ and $\beta = 1$). Hence $u \in \text{Im}(\mu)$.

Proof of Theorem 2. Without losing generality we may assume $\Pi' = \Pi$. We will use induction on c, the case $c = 0$ being true by Theorem 1. First assume $c = 1$ and take $i \in \{1, \ldots, k\}$ such that $\dim(\pi_i(E)) > 0$ for all irreducible components E of T_{red}. Fix a general hyperplane $H \subset \mathbb{P}^n$ and set $T_1 := T \cap \pi_i^{-1}(H)$. Bertini’s theorem ([1], Th. 6.3) gives that T_1 is zero-dimensional. Since $\dim(T) = 1$ and each $\mathcal{O}_Y(e_i)$ is spanned, if $h^1(T, (F|T)(b)) = 0$, then $h^1(T, (F|T)(c)) = 0$ for all $c \geq b$. If $b \in \mathbb{N}^k$, then $h^0(T, \mathcal{O}_Y(b)) = 0$ if and only if $h^2(\Pi, T_1(b)) = 0$. Since $\dim(T_1) = 0$, if $h^1(\Pi, T_1(b)) = 0$, then $b \in \mathbb{N}^k$ and $h^1(\Pi, T_1(c)) = 0$ for all $c \geq b$. Assume $h^1(\Pi, F(u)) = 0$ for all $u \geq \underline{0} := (0, \ldots, 0)$. Since $\dim(T_1) = 0$, if $h^1(\Pi, T_1(b)) = 0$ and $b \in \mathbb{N}^k$, then $h^1(\Pi, T_1(c)) = 0$ for all $c \geq b$. We have an exact sequence

\begin{equation}
0 \rightarrow \mathcal{I}_T \otimes F(a - e_i) \rightarrow \mathcal{I}_T \otimes F(a) \rightarrow \mathcal{I}_{T_1, \Pi} \otimes (F|\Pi_1)(a) \rightarrow 0
\end{equation}

From (3) we get that the following conditions are equivalent:

(a) $h^1(\Pi, \mathcal{I}_T \otimes F(a)) = 0$ and the map $i_{2,a} : h^2(\Pi, \mathcal{I}_T \otimes (a - e_i)) \rightarrow h^2(\Pi, \mathcal{I}_T \otimes F(a))$ is injective;

(b) $h^1(\Pi, \mathcal{I}_T \otimes F(a)) = 0$ and $h^1(\Pi, \mathcal{I}_{T_1} \otimes F(a)) = 0$.

From now on we assume $h^1(\Pi, F(u)) = 0$ for all $u \geq \underline{0} := (0, \ldots, 0)$. If $a \geq 0$ and $h^1(\Pi, \mathcal{I}_T \otimes F(a)) = 0$, then $h^1(\Pi, \mathcal{I}_{T_1} \otimes F(b)) = 0$ for all $b \geq a$. Hence if $a \geq 0$ and (b) is satisfied then $i_{2,a}$ is injective for all $b \geq a$. Since $(1, \ldots, 1)$ is ample, we get that if (a) holds and $a \geq 0$, then $h^2(\Pi, \mathcal{I}_T \otimes (b - e_i)) = 0$ for all $b \geq a$. Now assume $a \geq 0$ and that (a) is satisfied. Theorem 1 and Proposition 1 give that the R-module $T_1(F, a) := \oplus_{b \geq a} H^0(\Pi_1, \mathcal{I}_{T_1} \otimes F(b))$ is generated by
its components in degree a and $a + e_j$, $1 \leq j \leq k$. Theorem 1 and Proposition 1 give that the R-module $T(F, a) := \oplus_{b \geq a} H^0(I, I_T \otimes F(b))$ is generated by its components in degree $a, a + e_j$, $1 \leq j \leq k$, and $a + e_j + e_m$, $1 \leq j \leq m \leq k$, proving the case $\dim(T) = 1$. The inductive proof of the general case require only notational modifications and hence it is omitted.

REFERENCES

Received: August 27, 2007