On λ-Nuclear Maps

W. Shatanawi

Department of Mathematics, The Hashemite University
P.O. Box 150459, Zarqa 13115, Jordan
swasfi@hu.edu.jo

Abstract

In this paper, we prove that if the map T is a λ-nuclear map from a Banach space E into a Banach space F and if F contains no (isomorphic) copy of c_0, then T is a compact map. Also, we give an example to show that the assumption that F does not contain a copy of c_0 is essential.

Keywords: sequence spaces, λ-nuclear map, convergent and unconditionally convergent, compact map

1 Basic Concepts.

A sequence space is a vector space of sequences of scalars (real or complex) which includes every finitely non-zero sequence. If λ is a sequence space then its Köthe dual is the sequence space

$$\lambda^\times = \{ \zeta : \sum_n |\eta_n \zeta_n| < +\infty \ \forall \eta \in \lambda \}.$$

A linear map T from a normed space E into a normed space F is called a λ-nuclear map if there exist a sequence (α_n) in λ and sequences (a_n) and (y_n) in E' and F respectively such that (a_n) is bounded and (y_n) has the property that for each $b \in F'$, $(\langle y_n, b \rangle) \in \lambda^\times$ and such that

$$Tx = \sum_n \alpha_n \langle x, a_n \rangle y_n,$$

for all $x \in E$ [2,3].

We say that a Banach space E has the Schur property if every weakly convergent sequence in E is norm convergent.

A series $\sum_n x_n$ in a Banach space E is called weakly unconditionally Cauchy if

$$\sum_n |\langle x_n, a \rangle| < +\infty,$$

for all $a \in E'$.

The following well-known results in Banach space theory are crucial for our subsequent arguments.
Theorem 1.1 [1] Every weakly unconditionally Cauchy series $\sum_n x_n$ in a Banach space E is unconditionally convergent if and only if E contains no (isomorphic) copy of c_0.

Theorem 1.2 [1] (Schur’s Theorem) If a sequence (x_n) in ℓ_1 is weakly Cauchy (which means that $\lim_n \langle x_n, y \rangle$ exists for each $y \in \ell_\infty$), then (x_n) is norm convergent.

Remark. According to Schur’s Theorem, the space ℓ_1 has Schur’s property.

2 Main results.

We start our work by proving the following technical Lemma.

Lemma 2.1 Let $\sum_n x_n$ be an unconditionally convergent series in a Banach space E. Define a map $S : \ell_\infty \to E$ by putting $S\eta = \sum_n \eta_n x_n$. Then S is a compact map. In fact, we have $\lim_n ||S - S_n|| = 0$, where S_n is the finite rank linear map from ℓ_∞ to E defined by $S_n\eta = \sum_{k=1}^n \eta_k x_k$.

Proof. To prove this, let $R : c_0 \to E$ be the restriction of S to the subspace c_0 of ℓ_∞. Then its adjoint $R' : E' \to \ell_1$ is given by $R'a = (\langle x_n, a \rangle)$. Indeed, writing $\eta_n = \langle x_n, a \rangle$, we have, for all $\zeta \in c_0$,

$$\langle \zeta, R'a \rangle = \langle R\zeta, a \rangle = \sum_n \zeta_n \langle x_n, a \rangle = \sum_n \zeta_n \eta_n = \langle \zeta, \eta \rangle,$$

and hence $R'a = \eta$. Clearly R' is continuous when both E' and ℓ_1 are equipped with weak*-topology. We claim that R' is also continuous when E' is equipped with weak*-topology while ℓ_1 is equipped with the weak topology. To establish this claim, it suffices to check that, for each $\zeta \in \ell_\infty$. The linear functional $a \mapsto \langle \zeta, R'a \rangle$ defined on E' is continuous with respect to the weak*-topology. This follows immediately from the identity $\langle \zeta, R'a \rangle = \langle S\zeta, a \rangle$ which is easily checked as follows:

$$\langle \zeta, R'a \rangle = \sum_n \zeta_n \langle x_n, a \rangle = \langle \sum_n \zeta_n x_n, a \rangle = \langle S\zeta, a \rangle.$$

Now, the closed unit ball E'_1 is compact with respect to the weak*-topology. So, by the continuity of R' we have proved, its image $R'E'_1$ in ℓ_1 is weakly compact. By a version of Schur’s Theorem, we see that $R'E'_1$ is compact in the norm topology. This shows that R' is compact. Hence its adjoint $R'' : \ell_\infty \to E''$ is
also compact. Clearly \(S : \ell_\infty \rightarrow E \) and \(R'' : \ell_\infty \rightarrow E'' \) coincide on \(\ell_\infty \). So \(S \) is also compact. Let \(R_n : \ell_1 \rightarrow \ell_1 \) be the projection defined by

\[
R_n \zeta = (\zeta_1, \zeta_2, \ldots, \zeta_n, 0, 0, \ldots).
\]

Using the compactness of \(R'E'_1 \) in the norm topology we can show that \(\sup_{\zeta \in R'E'_1} ||\zeta - R_n \zeta|| \rightarrow 0 \) as \(n \rightarrow \infty \). Thus \(\lim_n ||R' - R'_n|| = 0 \), which gives \(\lim_n ||R'' - R''R'_n|| = 0 \). It is easy to check that \(R''R'_n \) coincides with \(S_n \) on \(\ell_\infty \). Therefore \(\lim_n ||S - S_n|| = 0 \).

The following result is essential in proving our main result.

Lemma 2.2 [2] Let \(F \) be a Banach space, \(\lambda \) sequence space and \((\alpha_n) \in \lambda\). Let \((y_n)\) be a sequence in \(F \) such that \((\langle y_n, b \rangle) \in \lambda^\times \) for each \(b \in F' \). Then

\[
\sup_{b \in F', ||b|| \leq 1} \sum_n |\alpha_n(y_n, b)| < +\infty.
\]

Remark. Let \((\alpha_n)\) be an element of a sequence space \(\lambda \), \((y_n)\) be a sequence in a Banach space \(F \), and \((\langle y_n, b \rangle) \in \lambda^\times \) for all \(b \in F \). Then by using Lemma 2.1, and Theorem 1.1, we know that series \(\sum_n \alpha_n y_n \) is unconditionally convergent if \(F \) has no copy of \(c_0 \).

To this end, we have furnished the necessary back ground to give our main result.

Theorem 2.1 If \(T \) is a \(\lambda \)-nuclear map from a Banach space \(E \) into a Banach space \(F \) and if \(F \) contains no copy of \(c_0 \), then \(T \) is a compact map.

Proof. Since \(T \) is a \(\lambda \)-nuclear map, there exists a sequence \((\alpha_n)\) in \(\lambda \) and sequences \((a_n)\) and \((y_n)\) in \(E' \) and \(F \) respectively such that \((\alpha_n)\) is bounded in \(E' \) and \((\langle y_n, b \rangle) \in \lambda^\times \) for all \(b \in F' \) and such that

\[
Tx = \sum_n \alpha_n \langle x, a_n \rangle y_n.
\]

Define linear maps \(R : \lambda \rightarrow F \), \(L : E \rightarrow \ell_\infty \) and \(D\alpha : \ell_\infty \rightarrow \lambda \) by putting \(R\zeta = \sum_n \zeta_n y_n \), \(Lx = (\langle x, a_n \rangle) \), and \(D\alpha \eta = (\alpha_n \eta_n) \). Then clearly \(T = RD\alpha L \).

Since \(\sum_n \alpha_n y_n \) is unconditionally convergent series in \(F \), by Lemma 2.1, the linear map from \(\ell_\infty \) to \(F \) sending \(\eta \) to \(\sum_n \eta_n \alpha_n y_n \) is compact. It is easy to check that \(RD\alpha \eta = \sum_n \alpha_n \eta_n y_n \) and hence \(RD\alpha \) is compact. Therefore \(T \) is compact as well.

Now we give an example to show that the assumption that \(F \) does not contain a copy of \(c_0 \) in Theorem 2.1 is essential.
Example 2.1 Let $E = F = c_0$ and $\lambda = \ell_\infty$. Let T be the identity map on c_0. Then T is λ-nuclear map which is noncompact.

Proof. Let (e_n) denoted to the standard base of c_0 and (e'_n) denoted to the standard base of ℓ_1. Then $Tx = \sum_n \alpha_n \langle x, a_n \rangle y_n$, where $\alpha_n = 1$, $a_n = e'_n$, and $y_n = e_n$. Notice that $\alpha \in \ell_\infty = \lambda$, (a_n) is bounded sequence in $c'_0 = \ell_1$ and $(\langle y_n, b \rangle) \in \lambda^* = \ell_1$ for all $b \in c'_0 = \ell_1$. Therefore T is λ-nuclear. Clearly T is noncompact.

Our main result is a generalization to the following result.

Corollary 2.1 [1] Every λ-nuclear map from a Banach space E into a reflexive Banach space F is compact.

References

Received: June 3, 2007