Riemann-Stieltjes Operators between Weighted Bloch and Weighted Bergman Spaces

Ajay K. Sharma

School of Applied Physics and Mathematics
Shri Mata Vaishno Devi University
P/O Kakryal, Udhampur-182121, India
aksju_76@yahoo.com

Som Datt Sharma

Department of Mathematics
University of Jammu, Jammu-180006, India
somidatt_jammu@yahoo.co.in

Abstract
In this paper, Riemann-Stieltjes operators between weighted Bloch and weighted Bergman spaces are considered. We characterize boundedness and compactness of these operators using certain growth properties of holomorphic symbols.

Keywords: weighted Bergman spaces, weighted Bloch spaces, Riemann-Stieltjes operator, Carleson measure

1 Introduction
Let \(\mathbb{D} \) be the open unit disk in the complex plane \(\mathbb{C} \). Let \(g : \mathbb{D} \rightarrow \mathbb{C} \) be a holomorphic map. Denote by \(H(\mathbb{D}) \) the space of holomorphic functions on \(\mathbb{D} \). For \(f \in H(\mathbb{D}) \), the Riemann-Stieltjes operator induced by \(g \) is defined by
\[
T_g f(z) = \int_0^z f(\zeta)dg(\zeta) = \int_0^1 f(tz)zg'(tz)dt, \quad z \in \mathbb{D}.
\]
The Riemann-Stieltjes operator can be viewed as a generalization of Cesaro operator defined by
\[
Tf(z) = \frac{1}{z} \int_0^z \frac{f(w)}{1-w}d(w), \quad z \in \mathbb{D}.
\]

\(^1\)Supported by CSIR–grant (F.No. 9/100(100)2002 EMR-1).
Ch. Pommerenke [7] initiated the study of Riemann-Stieltjes operator on H^2, where he showed that T_g is bounded on H^2 if and only if g is in $BMOA$. This was extended to other Hardy spaces H^p, $1 \leq p < \infty$, in [1] and [2] where compactness of T_g on H^p and Schatten class membership of T_g on H^2, was also completely characterized in terms of the symbol g. Similar questions on weighted Bergman spaces were considered by A. Aleman and A. G. Siskakis in [3].

Recently, several authors have studied Riemann-Stieltjes operators on different spaces of analytic functions. For example, one can refer to ([5] [8] [9] [10] [11] and [12]) for the study of these operators on Bergman spaces, Dirichlet spaces, BMOA and VMOA and related references therein. In this paper we characterize boundedness and compactness of Riemann-Stieltjes operators between weighted Bloch and weighted Bergman spaces.

2 Preliminaries

In this section we review the basic concepts of weighted Bergman spaces A^p_α and weighted Bloch spaces B^α and collect some essential facts that will be needed throughout the paper.

2.1. Weighted Bergman Spaces. Let $dA(z)$ be the area measure on \mathbb{D} normalized so that area of \mathbb{D} is 1. For each $\alpha \in (-1, \infty)$, we set $d\nu_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z)$, $z \in \mathbb{D}$. Then $d\nu_\alpha$ is a probability measure on \mathbb{D}. For $0 < p < \infty$ the weighted Bergman space A^p_α is defined as

$$A^p_\alpha = \{ f \in H(\mathbb{D}) : ||f||_{A^p_\alpha} = \left(\int_{\mathbb{D}} |f(z)|^p d\nu_\alpha(z) \right)^{1/p} < \infty \}.$$

Note that $||f||_{A^p_\alpha}$ is a true norm only if $1 \leq p < \infty$ and in this case A^p_α is a Banach space. For $0 < p < 1$, A^p_α is a non-locally convex topological vector space and $d(f, g) = ||f - g||_{A^p_\alpha}$ is a complete metric for it. The growth of functions in the weighted Bergman spaces is essential in our study. To this end, the following sharp estimate will be useful. (see [7] p. 53.). It tells us how fast an arbitrary function from A^p_α grows near the boundary.

Let $f \in A^p_\alpha$. Then for every z in \mathbb{D}, we have

$$|f(z)| \leq \frac{||f||_{A^p_\alpha}}{(1 - |z|^2)^{(2+\alpha)/p}}$$

with equality holds if and only if f is a constant multiple of the function

$$k_\alpha(z) = \left(\frac{1 - |z|^2}{1 - \overline{a}z} \right)^{(2+\alpha)/p}.$$

It can be easily shown that $||k_\alpha||_{A^p_\alpha} \approx 1$.

2.1. Weighted Bloch Spaces. For $\alpha > 0$, let B^α consists of all
analytic functions f on \mathbb{D} satisfying the condition
\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty.
\]
Note that $B^1 = B$, the usual Bloch space. For $f \in B^\alpha$ define
\[
||f||_{B^\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |f'(z)| < \infty.
\]
With this norm B^α is a Banach space. Integrating the estimate
\[
|f'(z)| \leq ||f||_{B^\alpha} (1 - |z|^2)^\alpha,
\]
we obtain
\[
|f(z) - f(0)| \leq \int_0^1 |z||f'(tz)|dt \leq ||f||_{B^\alpha} \int_0^1 \frac{|z|}{(1 - t|z|^2)^\alpha}dt,
\]
for all $z \in \mathbb{D}$. In case $0 < \alpha < 1$, the integral on the right is uniformly bounded by the constant $\int_0^1 (1 - t)^{-\alpha}dt$, and it follows that $B^\alpha \subset H^\infty$. It is easy to check that in this case the linear space B^α is an algebra. In fact, Hardy and Littlewood, have shown that for $0 < \alpha < 1$, the space B^α consist of all functions f analytic on \mathbb{D} satisfying the Lipschitz condition
\[
|f(z) - f(w)| \leq |z - w|^{1-\alpha},
\]
for all $z, w \in \mathbb{D}$ (see [4]).

In case $1 < \alpha < \infty$, the above estimate implies
\[
|f(z) - f(0)| \leq \frac{||f||_{B^\alpha}}{\alpha - 1} \frac{1}{(1 - |z|^2)^{\alpha-1}}, \tag{2.3}
\]
while for $\alpha = 1$ it is well known that the following hold ([6] and [14]).
\[
|f(z) - f(w)| \leq ||f||_B \beta(z, w) \tag{2.4}
\]
for $f \in B$, where
\[
\beta(z, w) = \frac{1}{2} \log \frac{|1 - z\bar{w}| + |z - w|}{|1 - z\bar{w}| - |z - w|}
\]
is the Bergman metric on \mathbb{D}. From (2.4), it follows that for $f \in B$,
\[
|f(z)| \leq \frac{1}{\log 2} ||f||_B \log \left(\frac{2}{1 - |z|^2} \right). \tag{2.5}
\]
Throughout this paper we fix some positive radius $0 < r < \infty$ and consider disks $D(z, r)$ in the Bergman metric. The set
\[
D(z, r) = \{ w \in \mathbb{D} : \beta(z, w) < r \}, \quad z \in \mathbb{D},
\]
is called hyperbolic disk or Bergman disk of radius r about z. It is well known that $D(z, r)$ is a Euclidean disk whose Euclidean center and Euclidean radius are
\[
\frac{(1 - s^2)z}{(1 - s^2|z|^2)} \quad \text{and} \quad \frac{(1 - |z|^2)s}{(1 - s^2|z|^2)}.
\]
where $s = \tanh r \in (0, 1)$, respectively. For fixed $r > 0$, the area of $D(z, r)$ in \mathbb{D} has the estimation;
\[
|D(z, r)|_A = \int_{D(z, r)} dA(w) \approx (1 - |z|^2)^2.
\]
For fixed $r > 0$, it is known that if $w \in D(z, r)$, then
\[
|1 - z\bar{w}| \approx (1 - |z|^2) \quad \text{and} \quad |D(w, s)|_A \approx C|D(z, r)|_A.
\]
Following lemma lists additional properties of the hyperbolic disks.

Lemma 2.2. [7] Fix $r, \ 0 < r < \infty$. There exists a positive integer M and a sequence $\{a_n\}$ in \mathbb{D} such that :

(i) The disk \mathbb{D} is covered by $\{D(a_n, r)\}_n$.

(ii) Every point in \mathbb{D} belongs to at most M sets in $\{D(a_n, 2r)\}_n$.

(iii) If $n \neq m$, then $\beta(a_n, a_m) \geq \frac{r}{7}$.

We shall use these estimates in the proofs of the Theorems below. For general background of weighted Bergman spaces A^p_α and weighted Bloch spaces, one may consult [13] and [14] and the references therein.

3 Riemann-Stieltjes operators from weighted Bergman spaces A^p_α into weighted Bloch spaces B^α

In this section we characterize boundedness and compactness of Riemann-Stieltjes operators from weighted Bergman spaces A^p_α into weighted Bloch spaces B^α.

The following Theorem characterizes Riemann-Stieltjes operators from weighted Bergman spaces A^p_β into weighted Bloch spaces B^α.

Theorem 3.1. Let $1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0$ and $g : \mathbb{D} \to \mathbb{C}$ be a holomorphic map. Then the Riemann-Stieltjes operator T_g maps A^p_β boundedly into B^α if and only if
\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z)| < \infty.
\]
Proof. First suppose that
\[M = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z)| < \infty. \]

By (2.1), we have
\[|f(z)| \leq \frac{||f||_{A_p^\beta}}{(1 - |z|^2)^{(\beta + 2)/p}} \]
for all \(z \in \mathbb{D} \). Thus
\[
||T_g f||_{B^\alpha} = |T_g f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |(T_g f)'(z)| \\
= \sup_{z \in \mathbb{D}} (1 - |z|^2)^\alpha |g'(z)f(z)| \\
\leq \sup_{z \in \mathbb{D}} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z)| ||f||_{A_p^\beta} \\
= M ||f||_{A_p^\beta},
\]

hence \(T_g \) maps \(A_p^\beta \) boundedly into \(B^\alpha \).

Conversely, suppose \(T_g \) maps \(A_p^\beta \) boundedly into \(B^\alpha \). Fix a point \(a \) in \(\mathbb{D} \) and consider the function
\[
f_a(z) = \left(\frac{1 - |a|^2}{(1 - \overline{a}z)^2} \right)^{(\beta + 2)/p}.
\]
Then \(f_a \) is a function of unit norm in \(A_p^\beta \). Since \(T_g \) maps \(A_p^\beta \) boundedly into \(B^\alpha \), we can find a positive constant \(C \) such that
\[
||T_g f_a||_{B^\alpha} \leq C ||f_a||_{A_p^\beta} = C,
\]
for all \(a \in \mathbb{D} \), hence for each point \(z \in \mathbb{D} \) we have
\[
(1 - |z|^2)^\alpha |f_a(z)g'(z)| \leq C.
\]
In particular, when \(z = a \), we get
\[
(1 - |a|^2)^\alpha \left(\frac{1 - |a|^2}{(1 - |a|^2)^2} \right)^{(\beta + 2)/p} |g'(a)| \leq C,
\]
whence
\[
(1 - |a|^2)^{(p\alpha - \beta - 2)/p} |g'(a)| < C.
\]
Since \(a \in \mathbb{D} \) is arbitrary, the result follows.

Theorem 3.2. Let \(1 \leq p < \infty, -1 < \beta < \infty, \alpha > 0 \) and \(g : \mathbb{D} \to \mathbb{C} \) be a holomorphic map. Suppose that \(T_g \) maps \(A_p^\beta \) boundedly into \(B^\alpha \). Then \(T_g \) maps \(A_p^\beta \) compactly into \(B^\alpha \) if and only if
\[
\lim_{|z| \to 1^-} (1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z)| = 0. \tag{3.2}
\]
Proof. First suppose that (3.2) holds. Let \(\{f_n\} \) be a bounded sequence in \(A^p_{\beta} \) that converges to zero uniformly on compact subsets of \(\mathbb{D} \). Let \(M = \sup_n ||f_n||_{A^p_{\beta}} < \infty \). Given \(\varepsilon > 0 \), there exist an \(r \in (0, 1) \) such that if \(|z| > r \), then

\[
(1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z)| < \varepsilon.
\]

Thus for \(z \in \mathbb{D} \) such that \(|z| > r \), by (2.1) we have

\[
(1 - |z|^2)^{\alpha}|(T_g f_n)'(z)| = (1 - |z|^2)^{\alpha}|g'(z)||f_n(z)|
\leq (1 - |z|^2)^{\alpha - (\beta - 2)/p}|g'(z)| ||f_n||_{A^p_{\beta}}
\leq \varepsilon M,
\]

for all \(n \). On the other hand, since \(f_n \to 0 \) uniformly on compact subsets of \(\mathbb{D} \), there exist an \(n_0 \) such that if \(|z| \leq r \) and \(n \geq n_0 \), then \(|f_n'(z)| < \varepsilon \). By Theorem 3.1, we have \(g \in \mathcal{B}^\alpha \) and so we have

\[
N = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha}|g'(z)| < \infty,
\]

hence

\[
\sup_{|z| \leq r} (1 - |z|^2)^{\alpha}|(T_g f_n)'(z)| = \sup_{|z| \leq r} (1 - |z|^2)^{\alpha}|g'(z)| f_n(z)|
< \varepsilon N.
\]

The above arguments together yield

\[
||T_g f_n||_{\mathcal{B}^\alpha} = ||T_g f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha}|(T_g)' f_n(z)|
\leq \sup_{|z| \leq r} (1 - |z|^2)^{\alpha}|(T_g f_n)'(z)| + \sup_{|z| > r} (1 - |z|^2)^{\alpha}|(T_g f_n)'(z)|
\leq (N + M)\varepsilon.
\]

Thus

\[
||T_g f_n||_{\mathcal{B}^\alpha} \to 0 \text{ as } n \to \infty,
\]

hence \(T_g \) maps \(A^p_{\beta} \) compactly into \(\mathcal{B}^\alpha \).

Conversely, suppose \(T_g \) maps \(A^p_{\beta} \) compactly into \(\mathcal{B}^\alpha \) and (3.2) does not hold. Then there exists a positive number \(\delta \) and a sequence \(\{z_n\} \) in \(\mathbb{D} \) such that \(|z_n| \to 1 \) and

\[
(1 - |z|^2)^{(p\alpha - \beta - 2)/p} |g'(z_n)| \geq \delta,
\]

for all \(n \). For each \(n \), consider the function \(f_n \) defined as

\[
f_n(z) = \left(\frac{1 - |z_n|^2}{1 - \bar{z}_n z} \right)^{(\beta + 2)/p}, \quad z \in \mathbb{D}.
\]
Then the sequence \(\{f_n\} \) is norm bounded and \(f_n \to 0 \) uniformly on compact subsets of \(\mathbb{D} \), it follows that a subsequence of \(\{T_g f_n\} \) tends to 0 in \(\mathcal{B}^\alpha \). On the other hand,

\[
\|T_g f_n\|_{\mathcal{B}^\alpha} \geq (1 - |n|^2)^\alpha \|T_g f_n\|'(z_n)
\]

\[
= (1 - |n|^2)^\alpha |g'(z_n)| |f_n(z_n)|
\]

\[
= (1 - |n|^2)^{(p\alpha - \beta - 2)/p} |g'(z_n)|
\]

\[
\geq \delta,
\]

which is absurd. Hence we are done.

4 Riemann-Stieltjes operators between weighted Bloch spaces \(B^\alpha \)

In this section we characterize boundedness and compactness of Riemann-Stieltjes operators between weighted Bloch spaces \(B^\alpha \).

Theorem 4.1. Let \(\alpha > 0, \beta > 0 \) and \(g : \mathbb{D} \to \mathbb{C} \) be a holomorphic map.

(i) If \(0 < \alpha < 1 \), then \(T_g \) maps \(B^\alpha \) boundedly into \(B^\beta \) if and only if \(g \in B^\beta \).

(ii) Operator \(T_g \) maps \(B \) boundedly into \(B^\beta \) if and only if

\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |g'(z)| \log \frac{2}{(1 - |z|^2)} < \infty.
\]

(iii) If \(\alpha > 1 \), then \(T_g \) maps \(B^\alpha \) boundedly into \(B^\beta \) if and only if

\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^{1+\beta-\alpha} |g'(z)| < \infty.
\]

Proof. First we consider the case \(\alpha > 1 \). Suppose \(T_g \) maps \(B^\alpha \) boundedly into \(B^\beta \). Consider the function

\[
f_a(z) = \frac{1 - |a|^2}{(1 - \overline{a}z)^\alpha}, \quad z \in \mathbb{D}.
\]

Then \(\|f_a\|_{B^\beta} \leq 1 + 2\alpha \). Thus \(f_a \in B^\alpha \) and \(M = \sup\{\|f_a\|_{B^\beta} : a \in \mathbb{D}\} \leq 1 + 2\alpha \). Since \(T_g \) maps \(B^\alpha \) boundedly into \(B^\beta \), we can find a positive constant \(C \) such that

\[
\|T_g f_a\|_{B^\beta} \leq C \|f_a\|_{B^\alpha} \leq CM
\]

for each \(a \in \mathbb{D} \), hence for each \(z \in \mathbb{D} \), we have

\[
(1 - |z|^2)^\beta |g'(z)| |f_a(z)| = (1 - |z|^2)^\beta \|T_g f_a\|'(z)
\]

\[
\leq CM.
\]
In particular, when $z = a$, we have
\[(1 - |a|^2)^{1+\beta-a}|g'(a)| \leq CM. \]
Since $a \in \mathbb{D}$ is arbitrary, the result follows.

Conversely, suppose that
\[M = \sup_{z \in D}(1 - |z|^2)^{1+\beta-a}|g'(z)| < \infty \]
By (2.3), we have
\[|f(z) - f(0)| \leq \frac{||f||_{B^\alpha}}{(\alpha - 1)(1-|z|^2)^{(\alpha-1)}} \]
for all $z \in \mathbb{D}$, independent of $f \in B^\alpha$. Since
\[
||T_g f||_{B^\beta} = |T_g f(0)| + \sup_{z \in D}(1 - |z|^2)^{\beta}|(T_g f)'(z)| \\
\leq \sup_{z \in D}(1 - |z|^2)^{\beta}|f(z) - f(0)||g'(z)| + |f(0)| \sup_{z \in D}(1 - |z|^2)^{\beta}|g'(z)| \\
\leq \sup_{z \in D}(1 - |z|^2)^{\beta}|g'(z)| \frac{||f||_{B^\beta}}{(\alpha - 1)(1-|z|^2)^{(\alpha-1)}} + C \sup_{z \in D}(1 - |z|^2)^{\beta}|g'(z)| \\
\leq (CM + \frac{M}{(\alpha - 1)}) ||f||_{B^\beta}.
\]
Hence T_g maps B^α boundedly into B^β. This completes the proof of (iii). Next, we will prove (ii). Suppose T_g maps B boundedly into B^β. For $a \in \mathbb{D}$, let
\[f_a(z) = \log \frac{2}{(1-az)} , \quad z \in \mathbb{D}. \]
Then $f_a \in B$ and $||f_a||_B \leq 3$. So
\[
3||T_g||_{B^\beta} \geq ||T_g f_a||_{B^\beta} \\
= |T_g f_a(0)| + \sup_{z \in D}(1 - |z|^2)^{\beta}|(T_g f_a)'(z)| \\
\geq (1 - |a|^2)^{\beta}|g'(a)||f_a(a)| \\
= (1 - |a|^2)^{\beta}|g'(a)| \log \frac{2}{(1-|a|^2)}.
\]
Since $a \in \mathbb{D}$ is arbitrary, the result follows.

Conversely, suppose that
\[M = \sup_{z \in D}(1 - |z|^2)^{\beta}|g'(z)| \log \frac{2}{(1-|z|^2)} < \infty. \]
By (2.5), for \(f \in \mathcal{B}^\alpha \), we have
\[
\|T_g f\|_{\mathcal{B}^\beta} = |T_g f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |(T_g f)'(z)|
\leq \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |g'(z)| \frac{1}{\log 2} \log \frac{2}{(1 - |z|^2)} \|f\|_{\mathcal{B}^\alpha}
= \frac{1}{\log 2} M \|f\|_{\mathcal{B}^\alpha},
\]
hence \(T_g \) maps \(\mathcal{B} \) boundedly into \(\mathcal{B}^\beta \). This completes the proof of (ii). Finally we will prove (i). First suppose that \(T_g \) maps \(\mathcal{B}^\alpha \) boundedly into \(\mathcal{B}^\beta \), then
\[
g = g(0) + T_g 1 \in \mathcal{B}^\beta.
\]
Conversely, suppose that \(g \in \mathcal{B}^\beta \). Then
\[
|f(z)| \leq \|f\|_{\mathcal{B}^\alpha} (1 + (1 - |z|^2)^{1-\alpha}), \quad \alpha \neq 1, z \in \mathbb{D}.
\]
Thus, if \(f \in \mathcal{B}^\alpha \), then
\[
\|T_g f\|_{\mathcal{B}^\beta} \leq \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |(T_g f)'(z)|
\leq \sup_{z \in \mathbb{D}} ((1 - |z|^2)^\beta + (1 - |z|^2)^{\beta+1-\alpha}) |g'(z)| \|f\|_{\mathcal{B}^\alpha}
\leq C \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |g'(z)| \|f\|_{\mathcal{B}^\alpha}
\leq C \|g\|_{\mathcal{B}^\beta} \|f\|_{\mathcal{B}^\alpha}.
\]
As a result, \(T_g \) maps \(\mathcal{B}^\alpha \) boundedly into \(\mathcal{B}^\beta \).

Lemma 4.2.[6] Let \(0 < \alpha < 1 \) and let \(T \) be a bounded linear operator from \(\mathcal{B}^\alpha \) into a normed linear space \(X \). Then \(T \) is compact if and only if \(\|Tf_n\|_X \to 0 \), whenever \(\{f_n\} \) is a bounded sequence in \(\mathcal{B}^\alpha \) that converges to zero uniformly on \(\overline{\mathbb{D}} \).

Theorem 4.3. Let \(\alpha > 0, \beta > 0 \) and \(g : \mathbb{D} \to \mathbb{C} \) be a holomorphic map. Suppose that \(T_g \) maps \(\mathcal{B}^\alpha \) boundedly into \(\mathcal{B}^\beta \).

(i) If \(0 < \alpha < 1 \), then \(T_g \) maps \(\mathcal{B}^\alpha \) compactly into \(\mathcal{B}^\beta \).

(ii) Operator \(T_g \) maps \(\mathcal{B} \) compactly into \(\mathcal{B}^\beta \) if and only if
\[
\lim_{|z| \to 1} (1 - |z|^2)^\beta |g'(z)| \log \frac{2}{(1 - |z|^2)} = 0.
\]

(iii) If \(\alpha > 1 \), then \(T_g \) maps \(\mathcal{B}^\alpha \) compactly into \(\mathcal{B}^\beta \) if and only if
\[
\lim_{|z| \to 1} (1 - |z|^2)^{1+\beta-\alpha} |g'(z)| = 0.
\]
Proof. First we consider the case \(\alpha > 1 \). To prove that the condition in (iii) is sufficient for compactness of the operator \(T_g \) from \(\mathcal{B}_\alpha \) into \(\mathcal{B}_\beta \), it is enough to show that if \(\{ f_n \} \) is a bounded sequence in \(\mathcal{B}_\alpha \) that converges to zero uniformly on compact subsets of \(D \), then \(\lim_{n \to \infty} ||T_g f_n||_{\mathcal{B}_\beta} = 0 \). Let \(M = \sup_n ||f_n||_{\mathcal{B}_\alpha} < \infty \). Given \(\varepsilon > 0 \), there exists an \(r \in (0, 1) \) such that, if \(|z| > r \), then

\[
(1 - |z|^2)^{1+\beta-\alpha} |g'(z)| < \varepsilon.
\]

By (2.3), we have

\[
|f_n(z) - f_n(0)| \leq \frac{||f_n||_{\mathcal{B}_\alpha}}{(\alpha - 1)(1 - |z|^2)^{(\alpha - 1)}}
\]

for all \(z \in D \). Since

\[
||T_g f_n||_{\mathcal{B}_\beta} = ||T_g f_n(0)| + \sup_{z \in D} (1 - |z|^2)^\beta |(T_g f_n)'(z)|
\]

\[
\leq \sup_{z \in D} (1 - |z|^2)^\beta |f_n(z) - f_n(0)||g'(z)| + |f_n(0)| \sup_{z \in D} (1 - |z|^2)^\beta |g'(z)|
\]

\[
\leq \sup_{|z| \leq \xi} (1 - |z|^2)^\beta |g'(z)||f_n(z) - f_n(0)| + |f_n(0)| \sup_{|z| \leq \xi} (1 - |z|^2)^\beta |g'(z)|
\]

\[
+ \sup_{|z| > \xi} (1 - |z|^2)^\beta |g'(z)||f_n(z) - f_n(0)| + |f_n(0)| \sup_{|z| > \xi} (1 - |z|^2)^\beta |g'(z)|
\]

\[
\leq \sup_{|z| \leq \xi} (1 - |z|^2)^\beta |g'(z)||f_n(z) - f_n(0)| + |f_n(0)| \sup_{|z| \leq \xi} (1 - |z|^2)^\beta |g'(z)|
\]

\[
+ \sup_{|z| > \xi} (1 - |z|^2)^\beta |g'(z)| |f_n(z) - f_n(0)| + |f_n(0)| \sup_{|z| > \xi} (1 - |z|^2)^\beta |g'(z)|
\]

\[
\leq \varepsilon (4||g||_{\mathcal{B}_\beta} + \frac{M}{\alpha - 1} + M) \quad \text{as} \quad n \geq n_0.
\]

Thus, \(T_g \) maps \(\mathcal{B}_\alpha \) compactly into \(\mathcal{B}_\beta \).

Conversely, suppose that \(T_g \) maps \(\mathcal{B}_\alpha \) compactly into \(\mathcal{B}_\beta \) and (iii) does not hold. Then there exists a positive number \(\delta \) and a sequence \(\{ z_n \} \) in \(D \) such that \(|z_n| \to 1 \) and

\[
(1 - |z_n|^2)^{1+\beta-\alpha} |g'(z_n)| \geq \delta,
\]

for all \(n \). For each \(n \), let

\[
f_n(z) = \frac{1 - |z|^2}{(1 - |z| z_n)^\alpha}, \quad z \in D.
\]

Then the sequence \(f_n \) is norm bounded and \(f_n \to 0 \) uniformly on compact subsets of \(D \). Hence there exists a subsequence of \(\{ T_g f_n \} \) which tends to 0 in \(\mathcal{B}_\beta \). On the other hand,

\[
||T_g f_n||_{\mathcal{B}_\beta} \geq (1 - |z_n|^2)^\beta |(T_g f_n)'(z_n)|
\]

\[
= (1 - |z_n|^2)^\beta |g'(z_n)||f_n(z_n)|
\]

\[
= (1 - |z_n|^2)^{1+\beta-\alpha} |g'(z_n)|
\]

\[
\geq \delta,
\]
which is absurd. Hence we are done.

Next, we will prove (ii). Let \(\{f_n\} \) is a bounded sequence in \(\mathcal{B} \) that converges to zero uniformly on compact subsets of \(\mathbb{D} \). Let \(M = \sup_n \|f_n\|_\mathcal{B} < \infty \). Given \(\varepsilon > 0 \), there exists an \(r \in (0, 1) \) such that, if \(|z| > r \), then

\[
(1 - |z|^2)^\beta |g'(z)| \log \frac{2}{1 - |z|^2} < \varepsilon.
\]

By (2.5), we have

\[
|f_n(z)| \leq \frac{1}{\log 2} \|f_n\|_\mathcal{B} \log \frac{2}{1 - |z|^2}
\]

for all \(z \in \mathbb{D} \), \(f \in \mathcal{B}^\alpha \). Also, by Theorem 4.1, we have \(g \in \mathcal{B}^\beta \) and so, for the above \(\varepsilon \), we can find \(n_0 \in \mathbb{N} \) such that

\[
\|T_g f_n\|_{\mathcal{B}^\beta} = |T_g f_n(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |g'(z)| |f_n(z)|
\]

\[
\leq \sup_{|z| \leq r} (1 - |z|^2)^\beta |g'(z)| |f_n(z)| + \sup_{|z| > r} (1 - |z|^2)^\beta |g'(z)| |f_n(z)|
\]

\[
\leq \varepsilon \left(\|g\|_{\mathcal{B}^\beta} + M \right) \quad \text{for} \quad n \geq n_0.
\]

Thus \(T_g \) maps \(\mathcal{B} \) compactly into \(\mathcal{B}^\beta \). Conversely, suppose \(T_g \) maps \(\mathcal{B} \) compactly into \(\mathcal{B}^\beta \) and condition in (ii) does not hold. Then there exists a positive number \(\delta \) and a sequence \(\{z_n\} \) in \(\mathbb{D} \) such that \(|z_n| \to 1 \) and

\[
(1 - |z_n|^2)^\beta |g'(z_n)| \log \frac{2}{1 - |z_n|^2} \geq \delta,
\]

for all \(n \). For each \(n \), let

\[
f_n(z) = \log \frac{2}{1 - z_n z}, \quad z \in \mathbb{D}.
\]

Then the sequence \(f_n \) is norm bounded and \(f_n \to 0 \) uniformly on compact subsets of \(\mathbb{D} \). By the compactness of \(T_g \) we can find a subsequence of \(\{T_g f_n\} \) which tends to 0 in \(\mathcal{B}^\beta \). On the other hand,

\[
\|T_g f_n\|_{\mathcal{B}^\beta} \geq (1 - |z_n|^2)^\beta |(T_g f_n)'(z_n)|
\]

\[
= (1 - |z_n|^2)^\beta |g'(z_n)| |f_n(z_n)|
\]

\[
= (1 - |z_n|^2)^\beta |g'(z_n)| \log \frac{2}{1 - |z_n|^2}
\]

\[
\geq \delta,
\]

which is absurd. We are done.

Finally, we will prove (i). Suppose that \(\sup_n \|f_n\|_{\mathcal{B}^\alpha} \leq M \) and \(f_n \to 0 \) uniformly on \(\overline{\mathbb{D}} \). Then

\[
\sup_{z \in \mathbb{D}} (1 - |z|^2)^\beta |g'(z)| |f_n(z)| \leq \sup_{|z| \leq 1} |f_n(z)| \|g\|_{\mathcal{B}^\beta} \to 0 \quad \text{as} \quad n \to \infty.
\]
It follows from Lemma 4.2 that T_g maps \mathcal{B}^α compactly into \mathcal{B}^β.

Lemma 4.4. Let $1 \leq p < q < \infty$ and $-1 < \alpha < \infty$. Then the injection map from A^p_α into A^q_α is compact.

Proof Let $\{f_n\}_{n=1}^\infty$ be a bounded sequence in A^q_α, and let $M = \sup_{n \in \mathbb{N}} ||f_n||_{A^q_\alpha} \leq \infty$. By 2.1, $\{f_n : n \in \mathbb{N}\}$ is a normal family, hence we can find a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that converges uniformly on compact subsets of \mathbb{D} to an analytic function f. By Fatou’s lemma,

$$\int_{\mathbb{D}} |f(z)|^p \nu_\alpha(z) \leq \liminf_{k \to \infty} \int_{\mathbb{D}} |f_{n_k}(z)|^p \nu_\alpha(z) \leq M^q < \infty.$$

Since $p < q$, it follows that $f \in A^q_\alpha$. We claim that $\{f_{n_k}\}$ converges to f in A^p_α. Let $\varepsilon > 0$ and let Ω be an arbitrary compact subset of \mathbb{D}. Now

$$\int_{\mathbb{D} \setminus \Omega} |(f_{n_k} - f)(z)|^p \nu_\alpha(z) \leq \left(\int_{\mathbb{D} \setminus \Omega} |(f_{n_k} - f)(z)|^q \nu_\alpha(z) \right)^{p/q} \left(\int_{\mathbb{D} \setminus \Omega} \nu_\alpha(z) \right)^{1 - p/q}$$

$$\leq \left(\int_{\mathbb{D}} |(f_{n_k} - f)(z)|^q \nu_\alpha(z) \right)^{p/q} (\nu_\alpha(\mathbb{D} \setminus \Omega))^{1 - p/q}$$

$$\leq \left(2^q \int_{\mathbb{D}} |(f_{n_k}(z)|^q + |f(z)|^q \nu_\alpha(z) \right)^{p/q} (\nu_\alpha(\mathbb{D} \setminus \Omega))^{1 - p/q}$$

$$\leq 2^q (||f_{n_k}||_{A^q_\alpha}^{p/q} + ||f||_{A^q_\alpha}^{p/q}) (\nu_\alpha(\mathbb{D} \setminus \Omega))^{1 - p/q}$$

$$\leq 2^q + M^p (\nu_\alpha(\mathbb{D} \setminus \Omega))^{1 - p/q},$$

where in the first line we have used Holder’s inequality and the elementary inequalities

$$(x + y)^a \leq 2^a (x^a + y^b), \quad (x + y)^b \leq (x^b + y^b)$$

which holds when $x, y \geq 0$, and $0 < b < 1$. By choosing the compact set Ω so that $\mathbb{D} \setminus \Omega$ has sufficiently small area, we obtain

$$\int_{\mathbb{D} \setminus \Omega} |(f_{n_k} - f)(z)|^p \nu_\alpha(z) < \varepsilon/2$$

for k large enough. On the other hand, since $f_n \to f$ uniformly on Ω we can choose k large enough so that

$$\int_{\Omega} |(f_{n_k} - f)(z)|^p \nu_\alpha(z) < \varepsilon/2.$$

Thus $\{f_{n_k}\}$ converges to f in A^p_α. Hence the injection map is compact.

Corollary 4.5. Let $1 \leq p < \infty$, $-1 < \alpha < \infty$, $\alpha > 0$ and $q : \mathbb{D} \to \mathbb{C}$ be holomorphic. Then T_g maps \mathcal{B}^α compactly into A^p_β if and only if T_g maps \mathcal{B}^α boundedly into \mathcal{B}^β.

Proof. Suppose T_g maps \mathcal{B}^α boundedly into \mathcal{B}^β, thus also into the large space
Since convergence in either space implies uniform convergence on compact sets, it follows from closed graph theorem that T_g maps B^α boundedly into A^p_β. In order to show that T_g maps B^α compactly into A^p_β, choose any q such that $q > p$ and factorize T_g through the intermediate space A^q_β:

$$B^\alpha \xrightarrow{T_g} A^q_\beta \xrightarrow{I} A^p_\beta,$$

where \tilde{T}_g is the Riemann-Stieltjes operator from B^α to A^q_β, and I is the injection map. Since I is compact and \tilde{T}_g is bounded, so T_g maps B^α compactly into A^p_β.

References

Received: October 5, 2006