Increasing and Decreasing Gaps: 
Numbers which Have just $h$ Prime Factors

Rafael Jakimczuk

Division Matematica, Universidad Nacional de Lujan 
Buenos Aires, Argentina
jakimczu@mail.unlu.edu.ar

Abstract

Let us consider the numbers which have just $h$ primes in their factorization. The sequence of these numbers will be denoted by $c_{n,h}$. We prove that the inequalities

$$c_{n+1,h} - c_{n,h} < c_{n,h} - c_{n-1,h}$$

$$c_{n+1,h} - c_{n,h} > c_{n,h} - c_{n-1,h}$$

both have infinitely many solutions.

Mathematics Subject Classification: 11N25

Keywords: Numbers having just $h$ primes in their factorization, increasing and decreasing gaps

1 Introduction

Let the inequalities

$$\frac{p_{n-1} + p_{n+1}}{2} < p_n \quad \frac{p_{n-1} + p_{n+1}}{2} > p_n$$

or

$$p_{n+1} - p_n < p_n - p_{n-1} \quad (1)$$

$$p_{n+1} - p_n > p_n - p_{n-1} \quad (2)$$

It was proved by Erdos and Turan [1] that the inequalities (1) and (2) both have infinitely many solutions ( $p_n$ is the n-th prime). Two proofs were given, an elementary one and an analytical proof. Let us consider the numbers which
have just \( h \) primes in their factorization. The sequence of these numbers will be denoted by \( c_{n,h} \). First, we prove that inequalities (1) and (2) both have infinitely many solutions using a new and very elementary method. Then, the method is applied to prove

\[
\begin{align*}
\text{(3)} & \quad c_{n+1,h} - c_{n,h} < c_{n,h} - c_{n-1,h} \\
\text{(4)} & \quad c_{n+1,h} - c_{n,h} > c_{n,h} - c_{n-1,h}
\end{align*}
\]

have infinitely many solutions.

2 An elementary proof that the inequalities (1) and (2) both have infinitely many solutions

Lemma 2.1 If

\[
p_{k+1} = p_k + d, \quad p_{k+2} = p_k + 2d, \ldots, p_{k+s} = p_k + sd \quad (s \geq 1)
\]

Then \( s \leq d \)

Proof. We can write

\[
p_k = (d + 1)h + r \quad (0 \leq r \leq d)
\]

If \( r > 0 \), then

\[
p_k + rd = (d + 1)(h + r)
\]

is a composite number. Then \( s \leq d - 1 \). If \( r = 0 \) we have \( p_k = d + 1 \).

If \( d \geq 4 \) then

\[
p_k + (d - 3)d = (d - 1)^2
\]

is a composite number. Hence \( s \leq d - 4 \). If \( d = 2 \) then \( p_2 = 3 \), \( p_3 = 5 \), \( p_4 = 7 \) and 9 is composite. Therefore \( s = 2 \). The lemma is proved.

The following theorem (Euler) is well known and it can be proved by elementary methods. We use it as a lemma.

Lemma 2.2 The series \( \sum_{i=1}^{\infty} \frac{1}{p_i} \) is divergent.
Theorem 2.3 The inequalities (1) and (2) both have infinitely many solutions.

Proof. Consider the inequality (1).

Suppose that \( k \geq n + 1 \) we have

\[
p_k - p_{k-1} \leq p_{k+1} - p_k
\]

Let \( p_{n+1} - p_n = a \).
Then, we have the following inequalities (see lemma (2.1))

\[
p_n = q_n
\]

\[
p_{n+1} \geq q_{n+1} = p_n + a
\]

\[
p_{n+2} \geq q_{n+2} = p_n + 2a
\]

\[
\vdots
\]

\[
p_{n+a} \geq q_{n+a} = p_n + a^2
\]

\[
p_{n+a+1} \geq q_{n+a+1} = p_n + a^2 + (a + 1)
\]

\[
p_{n+a+2} \geq q_{n+a+2} = p_n + a^2 + 2(a + 1)
\]

\[
\vdots
\]

\[
p_{n+a+(a+1)} \geq q_{n+a+(a+1)} = p_n + a^2 + (a + 1)^2
\]

\[
\vdots
\]

\[
p_{n+a+(a+1)+\ldots+(a+k)} \geq q_{n+a+(a+1)+\ldots+(a+k)}
\]

\[
= p_n + a^2 + (a + 1)^2 + \ldots + (a + k)^2
\]

\[
= (1/3)k^3 + (a + 1/2)k^2 + (a^2 + a + 1/6)k + p_n + a^2
\]

\[
\vdots
\]

Therefore

\[
\sum_{i=n}^{\infty} \frac{1}{p_i} \leq \sum_{i=n}^{\infty} \frac{1}{q_i} \leq \frac{a}{q_n} + \sum_{k=0}^{\infty} \frac{a + k + 1}{q_{n+a+(a+1)+\ldots+(a+k)}}
\]

\[
= \frac{a}{p_n} + \sum_{k=0}^{\infty} \frac{k + a + 1}{(1/3)k^3 + (a + 1/2)k^2 + (a^2 + a + 1/6)k + p_n + a^2}
\]

Thus, the series \( \sum_{i=n}^{\infty} \frac{1}{p_i} \) is convergent, which contradicts lemma (2.2).
Therefore the inequality (1) has infinitely many solutions.
On the other hand, if the inequality (1) has infinitely many solutions then clearly the inequality (2) also has infinitely many solutions. The theorem is proved.

Note that this proof is more elementary than the Erdos-Turan proofs [1] since we do not need none assumption on the distribution of prime numbers.

3 Main Results

We need the following lemmas.

**Lemma 3.1** The series $\sum_{i=1}^{\infty} \frac{1}{c_{i,h}}$ is divergent.

Proof. We have

$$\sum_{i=1}^{\infty} \frac{1}{c_{i,h}} \geq \sum_{i=1}^{\infty} \frac{1}{2^h-1} \frac{1}{p_i}$$

The second series is divergent ( lemma 2.2), consequently also the first series is divergent. The lemma is proved.

The following lemma is well known

**Lemma 3.2** For $k \geq 1$ and $m \geq 1$ we have $H_m(k) = 1^m + \ldots + k^m$ is a polynomial in $k$ of degree $m + 1$ with rational coefficients.

For example, we have

$$H_1(k) = \frac{1}{2} k^2 + \frac{1}{2} k \quad H_2(k) = \frac{1}{3} k^3 + \frac{1}{2} k^2 + \frac{1}{6} k$$

**Lemma 3.3** given the equalities

$$c_{k+1,h} = c_{k,h} + d, \quad c_{k+2,h} = c_{k,h} + 2d, \ldots, c_{k+s,h} = c_{k,h} + sd \quad (s \geq 1)$$

then if $d$ is big enough ($h \geq 2$)

$$s \leq d^{2h} = P(d) \quad (5)$$

Proof. We can write

$$c_{k,h} = (d+1)^h t + r, \quad (0 \leq r \leq (d+1)^h - 1)$$

If $r > 0$ , then the number

$$c_{k,h} + r \left( \frac{(d+1)^h - 1}{d} \right) d = (d+1)^h (t + r)$$
Numbers which have just \( h \) prime factors. Hence
\[
s \leq \frac{((d + 1)^h - 1)^2}{d}
\]
where the right hand side is a polynomial in \( d \) of degree \( 2h - 1 \). If \( r = 0 \), then \( t = 1 \), and the number
\[
c_{k,h} + (d + 1)^h d = (d + 1)^{h+1}
\]
has at least \( h + 1 \) prime factors. Therefore
\[
s \leq (d + 1)^h
\]
where the right hand side is a polynomial in \( d \) of degree \( h \). Finally, if \( d \) is big enough (6) and (7) give (5). The lemma is proved.

**Theorem 3.4** Inequalities (3) and (4) have infinitely many solutions.

Proof. Let us consider the inequality (3). Suppose that \( k \geq n + 1 \) we have
\[
c_{k,h} - c_{k-1,h} \leq c_{k+1,h} - c_{k,h}
\]
Let \( c_{n+1,h} - c_{n,h} = a \).
Then, we have the following inequalities (see lemma (3.3))
\[
c_{n,h} = q_n
\]
\[
c_{n+1,h} \geq q_{n+1} = c_{n,h} + a
\]
\[
c_{n+2,h} \geq q_{n+2} = c_{n,h} + 2a
\]
\[
\vdots
\]
\[
c_{n+P(a),h} \geq q_{n+P(a)} = c_{n,h} + P(a)a
\]
\[
c_{n+P(a)+1,h} \geq q_{n+P(a)+1} = c_{n,h} + P(a)a + (a + 1)
\]
\[
c_{n+P(a)+2,h} \geq q_{n+P(a)+2} = c_{n,h} + P(a)a + 2(a + 1)
\]
\[
\vdots
\]
\[
c_{n+P(a)+P(a+1),h} \geq q_{n+P(a)+P(a+1)} = c_{n,h} + P(a)a + P(a + 1)(a + 1)
\]
\[
\vdots
\]
\[
c_{n+P(a)+P(a+1)+\ldots+P(a+k),h} \geq q_{n+P(a)+P(a+1)+\ldots+P(a+k)}
\]
\[
= c_{n,h} + P(a)a + P(a + 1)(a + 1) + \ldots
\]
\[
+ P(a + k)(a + k) = Q(k)
\]
Where \( Q(k) \) (lemma (3.3) and lemma (3.2)) is a polynomial in \( k \) of degree \( 2h + 2 \). Therefore

\[
\sum_{i=n}^{\infty} \frac{1}{c_i,h} \leq \sum_{i=n}^{\infty} \frac{1}{q_i} \leq \frac{P(a)}{q_n} + \sum_{k=0}^{\infty} \frac{P(a + k + 1)}{q_n + P(a) + P(a+1) + \ldots + P(a+k)} = \frac{P(a)}{c_{a,h}}
\]

\[
+ \sum_{k=0}^{\infty} \frac{P(a + k + 1)}{Q(k)}
\]

Where \( P(a + k + 1) \) is a polynomial in \( k \) of degree \( 2h \) (lemma (3.3)). Thus, the series \( \sum_{i=n}^{\infty} \frac{1}{c_i,h} \) is convergent, which contradicts lemma (3.1). Therefore the inequality (3) has infinitely many solutions.

On the other hand, if the inequality (3) has infinitely many solutions then clearly the inequality (4) also has infinitely many solutions. The theorem is proved.

ACKNOWLEDGEMENTS. The author is very grateful to professor Gustavo Diaz Ciarlo.

References


Received: August 1, 2006