Rational curves in grassmannians and
their Plücker embeddings: an application

E. Ballico,1 S. Pasotti2 and F. Prantil3

Dept. of Mathematics, University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it
pasotti@science.unitn.it
prantil@science.unitn.it

Abstract. Here we prove a corollary of [1, Thm. 1], providing sufficient condition
for the existence of α-stable coherent systems of type \((n, d, k)\) for some \(k > n\).

Mathematics Subject Classification: 14H60

Keywords: stable vector bundles on curves; coherent system; Grassmannian; spanned vector bundle

1. Introduction

Let \(X\) be a smooth and connected projective curve. A coherent system on \(X\)
is a pair \((E, V)\) such that \(E\) is a vector bundle on \(X\) and \(V \subseteq H^0(X, E)\)
is a linear subspace. The pair \((E, V)\) is of type \((n, d, k)\) if \(\text{rank}(E) = n\), \(\text{deg}(E) = d\)
and \(\text{dim}(V) = k\). Fix \(\alpha \in \mathbb{R}\). Let \(\mu(E) := d/n\) denote the slope of \(E\). Set
\(\mu_\alpha(E, V) := \mu(E) + \alpha k/n\). The real number \(\mu_\alpha\) is called the α-slope of the pair
\((E, V)\). A coherent subsystem \((F, W) \subseteq (E, V)\) is a coherent system such that
\(F \subseteq E\) and \(W \subseteq V \cap H^0(X, F)\). The pair \((E, V)\) is said to be α-stable (resp.
α-semistable) if \(\mu_\alpha(F, W) < \mu_\alpha(E, V)\) (resp. \(\mu_\alpha(F, W) \leq \mu_\alpha(E, V)\)) for all proper
coherent subsystems \((F, W)\) of \((E, V)\). For the general theory of coherent systems
and several results on the moduli schemes of α-stable coherent systems see [7], [4],
[2], [5], [6] and [3]. Here we prove a corollary of [1, Thm. 1], providing sufficient
conditions for the existence of α-stable coherent systems of type \((n, d, k)\) for some \(k > n\).

Proposition 1. Fix \(\alpha \in \mathbb{R}\) and integers integers \(n \geq 2\), \(a_1 \geq \cdots \geq a_n > 0\) and \(k\)
such that \(\binom{k}{n} \leq 1 + n a_n\) and \(\alpha > (na_1 - \sum_{i=1}^{n} a_i)/(k - n)\). Set \(E := \oplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^1}(a_i)\)
and take a general \(k\)-dimensional linear subspace \(V\) of \(H^0(\mathbb{P}^1, E)\). Then the coherent
system \((E, V)\) is α-stable. Furthermore, for all coherent subsystems \((F, W)\) of \((E, V)\)

1The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
2The author was partially supported by MIUR and GNSAGA of INdAM (Italy) and HPMT-CT-2001-00277.
3The author was partially supported by MIUR and GNSAGA of INdAM (Italy) and HPMT-CT-2001-00277.
such that $1 \leq \text{rank}(F) < n$ we have $\mu_\alpha(E,V) - \mu_\alpha(F,W) \geq (\sum_{i=1}^{n} a_i)/n + (k - n)\alpha/n - a_n$

Proof. By [1] for all integers r such that $1 \leq r < n$ and all rank r subsheaves F of E we have $\dim(V) \cap H^0(P^1, F)) \leq r$. Since $\mu_+(E) = a_1$, we have $\mu(F) \leq a_1$. Thus $\mu_\alpha(F, W) \leq a_1 + \alpha < (\sum_{i=1}^{n} a_i)/n + (k/n)\alpha$, concluding the proof.

\begin{thebibliography}{9}

Received: March 1, 2006