Construction of singular hypersurfaces
and linkage over a finite field

E. Ballico

Dept. of Mathematics, University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Here we prove two existence theorem over \mathbb{F}_q: existence of hypersurfaces with prescribed isolated singularities and existence of "smooth" linkage.

Mathematics Subject Classification: 14J25; 14J70; 14N05; 12E20; 14B05

Keywords: singular hypersurface; singular surface; hypersurfaces over a finite field; isolated singularity; liaison; linkage

1. The statements

Here we consider two existence theorems over \mathbb{F}_q. The corresponding constructions are obvious over \mathbb{F}_q and the aim is just to find a relatively low prime power q such that the same constructions may be done over \mathbb{F}_q. For any $P \in \mathbb{P}^n(\bar{\mathbb{F}}_q)$ and any integer $m > 0$ let mP denote the infinitesimal neighborhood of order $m − 1$ of P in \mathbb{P}^n. Set $0P = \emptyset$. In section 2 we will study the case of hypersurfaces with prescribed isolated singularities and prove the following result.

Theorem 1. Fix a prime power q, an integer $n \geq 2$, an integer $d > 0$, an integer s such that $1 \leq s \leq (q^{n+1} - 1)/(q - 1)$, integers $m_i > 0$, and s distinct points $P_1, \ldots, P_s \in \mathbb{P}^n(\mathbb{F}_q)$. Let $Z := \cup_{i=1}^s m_iP_i$ and assume $h^1(\mathbb{P}^n, \mathcal{I}_Z(d-1)) = 0$. Set $\delta := d^n − \sum_{i=1}^s m_i^n$ and $\delta_i := m_i^{n-1}$. Assume $q \geq (\delta-1)\delta^n$. Then there exists a degree d hypersurface $X \subset \mathbb{P}^n$ defined over \mathbb{F}_q and such that $\text{Sing}(X) \subseteq \{P_1, \ldots, P_s\}$. Assume $\text{Sing}(X) \subseteq \text{Sing}(\bar{\mathbb{F}}_q)$ if and only if $m_i \geq 2$, and X has multiplicity m_i at each P_i. Furthermore, if $q \geq (\delta-1)\delta^n + \sum_{i=1}^s (\delta_i-1)\delta_i^{n-1}$, then we may find X such that X has an ordinary multiple point with multiplicity m_i at P_i, i.e. the tangent cone of X at P_i is a cone over a smooth degree m_i hypersurface of \mathbb{P}^{n-1}.

When $P_1, \ldots, P_s \in \mathbb{P}^n(\bar{\mathbb{F}}_q)$, $P_i \notin \mathbb{P}^n(\mathbb{F}_q)$ for some i, but the set of all pairs $\{(P_1, m_1), \ldots, (P_s, m_s)\}$ is invariant for the natural action of the absolute Galois group of \mathbb{F}_q we are able to prove the following result.

Theorem 2. Fix a prime power q, an integer $n \geq 2$, an integer $d > 0$, an integer s such that $1 \leq s \leq (q^{n+1} - 1)/(q - 1)$, integers $m_i > 0$, and s distinct points $P_1, \ldots, P_s \in \mathbb{P}^n(\bar{\mathbb{F}}_q)$. Let $Z := \cup_{i=1}^s \mathbb{P}^n(\mathbb{F}_q)$ and assume $h^1(\mathbb{P}^n, \mathcal{I}_Z(d-1)) = 0$. Assume that the scheme Z and the inclusion of Z in \mathbb{P}^n are defined over \mathbb{F}_q, i.e. assume that the absolute Galois group of \mathbb{F}_q acts trivially on the set of pairs

1The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
\{(P_1, m_1), \ldots, (P_s, m_s)\}. Set \(\delta := d^n - \sum_{i=1}^s m_i^n\) and \(\delta_i := m_i^{n-1}\). Assume \(q \geq (\delta - 1)\delta^n\). Then there exists a degree \(d\) hypersurface \(X \subset \mathbb{P}^n\) defined over \(\mathbb{F}_q\) and such that \(\text{Sing}(X) \subseteq \{P_1, \ldots, P_s\}\), \(P_i \in \text{Sing}(X)\) if and only if \(m_i \geq 2\), and \(X\) has multiplicity \(m_i\) at each \(P_i\). Furthermore, if \(q \geq (\delta - 1)\delta^n + \sum_{i=1}^s (\delta_i - 1)\delta_i^{n-1}\), then we may find \(X\) such that \(X\) has an ordinary multiple point with multiplicity \(m_i\) at \(P_i\), i.e. the tangent cone of \(X\) at \(P_i\) is a cone over a smooth degree \(m_i\) hypersurface of \(\mathbb{P}^{n-1}\).

Remark 1. Take \(Z\) as in the statements of Theorems 1 and 2 and let \(\mu\) be the first integer \(t \geq -1\) such that \(h^i(\mathbb{P}^n, \mathcal{I}_Z(t)) = 0\). Thus \(h^i(\mathbb{P}^n, \mathcal{I}_Z(t)) = 0\) for all \(t \geq \mu\) and \(d \geq \mu + 1\). It is classical that \(\mu \leq m_1 + \cdots + m_s - 1\) and that we have equality if and only if the points \(P_1, \ldots, P_s\) are collinear (\([3]\)). If the points \(P_1, \ldots, P_s\) are in linearly general position and \(m_1 \geq m_2 \geq \cdots \geq m_s\), then \(\mu \leq \max\{m_1 + m_2 - 1, (m_1 + \cdots + m_s + n - 2)/n\}\) (\([3]\)).

Then we will consider a problem of “nice” linkage over \(\mathbb{F}_q\) (see [2] for general theory).

Theorem 3. Fix integers \(n \geq r \geq 2\) and a prime power \(q\). Let \(C \subset \mathbb{P}^n\) a smooth subscheme with pure codimension \(r\) defined over \(\mathbb{F}_q\). Let \(\mu\) be the first non-negative integer \(z\) such that \(h^i(\mathbb{P}^n, \mathcal{I}_C(z-i)) = 0\) for all \(i \geq 1\). Fix \(r\) integers \(t_1 \geq \cdots \geq t_r \geq \mu + 1\). Assume \(q \geq \sum_{i=1}^r (t_i^n - 1)t_i^2\). Then there are degree \(t_i\) hypersurfaces \(A_i \subset \mathbb{P}^n\) defined over \(\mathbb{F}_q\) such that \(A_1 \cap \cdots \cap A_r\) is a codimension \(r\) hypersurface containing \(C\), reduced along \(C\) and smooth outside \(C\).

In the statement of Theorem 3 we do not assume that \(C\) is connected or that it is geometrically connected. If \(C\) is not geometrically connected we do not assume that all the irreducible components of \(C(\mathbb{F}_q)\) are defined over \(\mathbb{F}_q\).

2. The proofs

Proof of Theorem 1. Since \(\dim(Z) = 0\) we have \(h^i(\mathbb{P}^n, \mathcal{I}_Z(t)) = 0\) for all \(t \in \mathbb{Z}\) and all \(j\) such that either \(j \geq 2\) and \(t \geq -n\) or \(2 \leq j \leq n - 1\). Let \(\mu\) be the first integer \(t \geq -1\) such that \(h^i(\mathbb{P}^n, \mathcal{I}_Z(t)) = 0\). Thus \(h^i(\mathbb{P}^n, \mathcal{I}_Z(t)) = 0\) for all \(t \geq \mu\) and \(d \geq \mu + 1\). By Castelnuovo-Mumford’s lemma the homogeneous ideal of \(Z\) is generated by forms of degree at most \(\mu + 1\) and hence it is generated by forms of degree at most \(d\). Let \(v : M \to \mathbb{P}^n\) be the blowing-up of \(\mathbb{P}^n\) at the points \(P_1, \ldots, P_s\). We have \(R^s_j(\mathcal{O}_M) = 0\) for all \(j \geq 1\) and \(v_*(\mathcal{O}_M) = \mathcal{O}_{\mathbb{P}^n}\). Set \(E_i := v^{-1}(P_i)\). Hence \(E_i, 1 \leq i \leq s\). Hence \(\text{Pic}(M) \cong \mathbb{Z}^{\#s+1}\) and \(\text{Pic}(M)\) is freely generated by the classes of the line bundles \(v^*(\mathcal{O}_{\mathbb{P}^n}(1))\) and \(\mathcal{O}_M(E_i), 1 \leq i \leq s\). For all integers \(t, z, z_i, 1 \leq i \leq z\), set \(\mathcal{L}_{t, z} := v^*(\mathcal{O}_{\mathbb{P}^n}(t)(-zE_1 - \cdots - zE_s))\) and \(\mathcal{L}_{t, z_1, \ldots, z_s} := v^*(\mathcal{O}_{\mathbb{P}^n}(t)(-z_1E_1 - \cdots - z_sE_s))\). Since \(P_i \in \mathbb{P}^n(\mathbb{F}_q)\) for all \(i, v, M\), each \(E_i\) and all \(\mathcal{L}_{t, z}\) and \(\mathcal{L}_{t, z_1, \ldots, z_s}\) are defined over \(\mathbb{F}_q\). If \(z_i \geq 0\) for all \(i\), then \(v_*(\mathcal{L}_{t, z_1, \ldots, z_s}) = \mathcal{I}_{\mathcal{L}_{t, z_1, \ldots, z_s}}P_i(1)\).

(a) Here we will check that \(R^s_j(\mathcal{L}_{t, z_1, \ldots, z_s}) = 0\) for all integers \(j, t, z_1, \ldots, z_s\) such that \(j \geq 1\) and \(z_i \geq 0\) for all \(i\). By the projection formula it is sufficient to prove the case \(t = 0\). The result is true if \(z_i = 0\) for all \(i\). Hence we may assume \(z_i > 0\) for some \(i\) and use induction on the integer \(z_1 + \cdots + z_s\). Hence we may assume that the result is true for the integers \(z_1, \ldots, z_i-1, z_i - 1, z_{i+1}, \ldots, z_s\). Set \(B := \bigcup_{i=1}^s z_iE_i\)
and \(B' := B - E_i \). Thus we have the following exact sequence on \(M \):
\[
(1) \quad 0 \rightarrow \mathcal{I}_B \rightarrow \mathcal{I}_{B'} \rightarrow \mathcal{O}_{E_i}(B') \rightarrow 0
\]

Apply the direct image functor to (1), the cohomology of \(E_i \cong \mathbb{P}^{n-1} \) and that \(\mathcal{O}_{E_i}(B') \) is a degree \(z_i - 1 \) line bundle on \(E_i \).

(b) By part (a) and the definition of \(\mu \) we have \(h^j(M, \mathcal{L}_{t,1},...,m_s) = 0 \) and \(h^0(M, \mathcal{L}_{t,1},...,m_s) = (m^+_t)^{-1} \sum_i (m^+_t - 1) \) for all \(j \geq 1 \), and \(t \geq \mu \) and in particular for all \(j \geq 1 \) and \(t \geq d - 1 \). In the same way we get that \(h^1(M, \mathcal{L}_{t,1},...,m_s(-E_i)) = 0 \) for all \(t \geq \mu + 1 \).

(c) Here we will show that \(\mathcal{L}_{t,1},...,m_s \) is very ample for all \(t \geq \mu + 1 \) and in particular for \(t = d \). It is sufficient to show the surjectivity of the restriction map \(\rho_{A, t} : H^0(M, \mathcal{L}_{t,1},...,m_s) \rightarrow H^0(A, \mathcal{L}_{t,1},...,m_s) \) for all zero-dimensional subschemes \(A \subset M \) such that \(\text{length}(A) = 2 \). We distinguish six cases.

(i) \(A \) is reduced, say \(A = \{ Q, Q' \} \) with \(Q \neq Q' \), and \(A \cap (E_1 \cup \cdots \cup E_s) = \emptyset \);

(ii) \(A \) is not reduced and \(Q := A_{\text{red}} \notin E_1 \cup \cdots \cup E_s \);

(iii) \(A \) is reduced, say \(A = \{ Q, Q' \} \) with \(Q \neq Q' \), \(Q \in E_i \), \(Q \in E_j \) and \(i \neq j \);

(iv) \(A \) is reduced, say \(A = \{ Q, Q' \} \) with \(Q \neq Q' \), \(Q \in E_i \) and \(Q' \notin E_1 \cup \cdots \cup E_s \);

(v) \(A \) is not reduced, \(Q := A_{\text{red}} \in E_i \), and \(A \) is not contained in \(E_i \);

(vi) \(A \subset E_i \) for some \(i \).

In cases (i), (ii), (iii), (iv), (v) the morphism \(v|A : A \rightarrow \mathbb{P}^n \) is an embedding. In all these cases it is sufficient to use that the homogeneous ideal of \(Z \) is generated by forms of degree at most \(t \). Now assume that we are in case (vi). We have \(h^1(\mathbb{P}^n, \mathcal{I}_{Z}(t - 1)) = 0 \) for all schemes \(Z' \subset Z \). Take the set-up of part (a) with respect to the integers \(z_j := m_j \) for all \(j \). Apply the twist by \(\mathcal{L}_{t,0,...,0} \) to the exact sequence (1), use the last vanishing of part (b) and that the line bundle \(\mathcal{L}_{d,1},...,m_s}|E_i \) is the degree \(m_i \) line bundle on \(E_i \cong \mathbb{P}^{n-1} \) and hence it is very ample.

(d) By part (c) the line bundle \(\mathcal{L}_{d,1},...,m_s \) is very ample. Notice that we have \(\text{deg}(\mathcal{L}_{d,1},...,m_s) = d^n - \sum_{i=1}^{s} m_i^n = \delta \). By [1], Th. 1, there is a smooth \(W \in |\mathcal{L}_{d,1},...,m_s| \). Set \(X := v(W) \). Now we consider the “Furthermore” part. We need to find \(W \) as above with the additional property that \(W \) is transversal to each \(E_i \). Since \(\text{deg}(\mathcal{L}_{d,1},...,m_s \cap E_i) = m_i \), \(\mathcal{L}_{d,1},...,m_s \) embeds \(E_i \cong \mathbb{P}^{n-1} \) by a subsystem of the degree \(m_i \) Veronese embedding. Hence the embedded projective space has degree \(m_i^{n-1} = \delta \). Thus its dual variety \(\Delta_i \) in the projective space \(|\mathcal{L}_{d,1},...,m_s| \) has degree at most \((\delta_i)^{n-1} \). The proof of [1], Lemma 1, and our assumption on \(q \) implies the existence of a hyperplane of \(|\mathcal{L}_{d,1},...,m_s| \) transversal to the image of \(M \) and to the images of all \(E_i \).

Proof of Theorem 2. We use the set-up introduced in the proof of Theorem 1. Now some of the line bundles \(\mathcal{O}_M(E_i) \) may not be defined over \(\overline{\mathbb{F}}_q \), but \(v, M \) and all line bundles \(\mathcal{L}_{t,z} \) are defined over \(\overline{\mathbb{F}}_q \). Furthermore for any \(t \in \mathbb{Z} \) the line bundle \(\mathcal{L}_{t,1},...,m_s \) is defined over \(\overline{\mathbb{F}}_q \). Working over \(\overline{\mathbb{F}}_q \) the proof of Theorem 1 show that \(\mathcal{L}_{d,1},...,m_s \) is very ample. Hence we may again apply [1], Th. 1.

Proof of Theorem 3. Let \(v : M \rightarrow \mathbb{P}^n \) be the blowing-up of \(C \). Since \(C \) is smooth, \(M \) is smooth. Set \(E := v^{-1}(C) \). For all integers \(t \) set \(\mathcal{L}_t := v^*((\mathcal{O}_{\mathbb{P}^n}(t)(-E)) \). As in the proof of Theorem 1 it is easy to check that \(\mathcal{L}_t \) is very ample for all \(t \geq \mu = 1 \). We again apply [1], Th. 1. Since a complete intersection in a smooth ambient has no embedded point, to check the existence of \(X \) which is reduced along \(C \) it is sufficient to test finitely many points of \(C(\overline{\mathbb{F}}_q) \).
References

Received: January 30, 2006