DISTRIBUTION OF THE RATIO OF MAXWELL

AND RICE RANDOM VARIABLES

M. Shakil

Department of Mathematics Miami Dade College Hialeah Campus Hialeah, FL 33012, USA E-mail: mshakil@mdc.edu

B. M. Golam Kibria

Department of Statistics
Florida International University
University Park
Miami, FL 33199, USA
E-mail: kibriag@fiu.edu

J. N. Singh

Department of Mathematics and Computer Science Barry University Miami Shores, FL 33161, USA E-mail: jsingh@mail.barry.edu

Abstract. The distributions of the ratio of independent random variables arise in many applied problems. These have been extensively studied by many researchers. In this paper, the distribution of the ratio $\left| \frac{X}{Y} \right|$ has been derived when X and Y are Maxwell and Rice random variables and are distributed independently of each other. The associated pdfs, cdfs, and kth moments have been given.

Mathematics Subject Classification: 33B99, 33C90, 33D90, 33E99, 62E15

Keywords: Gamma function, Hypergeometric function, Maxwelll distribution, Ratios, Rice distribution.

1 Introduction

The distributions of the ratio $\left| \frac{X}{Y} \right|$, when X and Y are independent random variables, arise in many applied problems of biology, economics, engineering, genetics, hydrology, medicine, number theory, order statistics, physics, psychology, etc, (see, for example, [4], [6], and [8], among others, and references therein). The distributions of the ratio $\left| \frac{X}{Y} \right|$, when X and Y are independent random variables and come from the same family, have been extensively studied by many researchers, (see, for example, [9], [10], [11], [12], [14], [16], and [17], among others,). In recent years, there has been a great interest in the study of the above kind when X and Y belong to different families, (see, for example, [13], and [15], among others). In this paper, the distributions of the ratio $\left| \frac{X}{Y} \right|$, when X and Y are independent random variables having Maxwell and Rice distributions respectively, have been investigated. The organization of this paper is as follows. Section 2 contains the derivation of the cdf of the ratio $Z = \left| \frac{X}{Y} \right|$. The pdf and kth moment of the RV $Z = \left| \frac{X}{Y} \right|$ have been derived in Sections 3 and 4 respectively. Some concluding remarks are given in Section 5.

The derivations of the cdf, pdf, and kth moment of $Z = \left| \frac{X}{Y} \right|$ involve some special functions, which are defined as follows (see, for example, [1], [5], and [18], among others, for details). The series

$${}_{p}F_{q}\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{p};\beta_{1},\beta_{2},\cdots,\beta_{q};z\right) = \sum_{k=0}^{\infty} \left\{ \frac{\left(\alpha_{1}\right)_{k} \left(\alpha_{2}\right)_{k}\cdots\left(\alpha_{p}\right)_{k}}{\left(\beta_{1}\right)_{k} \left(\beta_{2}\right)_{k}\cdots\left(\beta_{q}\right)_{k}} \frac{z^{k}}{k!} \right\},$$

is called a generalized hypergeometric series of order (p,q), where $(\alpha)_k$ and $(\beta)_k$ represent Pochhammer symbols. For p=1 and q=2, we have generalized hypergeometric function $_1F_2$ of order (1,2), given by

$$_{1}F_{2}(\alpha_{1}; \beta_{1}, \beta_{2}; z) = \sum_{k=0}^{\infty} \left\{ \frac{(\alpha_{1})_{k} z^{k}}{(\beta_{1})_{k} (\beta_{2})_{k} k!} \right\}$$
. For $p = 2$ and $q = 1$, we have generalized

hypergeometric function $_2F_1$ of order (2,1), given by

$$_{2}F_{1}(\alpha, \beta; \gamma; z) \equiv F(\alpha, \beta; \gamma; z) \equiv F(\beta, \alpha; \gamma; z) = \sum_{k=0}^{\infty} \left\{ \frac{(\alpha)_{k}(\beta)_{k} z^{k}}{(\gamma)_{k} k!} \right\}$$
. The following series is known as degenerate hypergeometric function or confluent hypergeometric function:

 $_1F_1(\alpha;\beta;z) = \sum_{k=0}^\infty \left\{ \frac{(\alpha)_k}{(\beta)_k} \frac{z^k}{k!} \right\}$. The confluent hypergeometric function $_1F_1(\alpha;\beta;z)$ is a degenerate form of the generalized hypergeometric function $_2F_1(\alpha,\beta;\gamma;z)$ of order (2,1) which arises as a solution the confluent hypergeometric differential equation. Note that $_1F_1(\alpha,\beta;z) = e^{z} \,_1F_1(\beta-\alpha,\beta;-z)$ which is known as Kummer Transformation. Also, we have $F(\alpha,\beta;\gamma;z) = (1-z)^{-\beta}F\left(\beta,\gamma-\alpha;\gamma;\frac{z}{z-1}\right)$. The integrals $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t}\,dt$, and $\gamma(\alpha,x) = \int_0^x t^{\alpha-1}e^{-t}\,dt$, $\alpha>0$ are called (complete) gamma and incomplete gamma functions respectively, whereas the integral $\Gamma(\alpha,x) = \int_x^\infty t^{\alpha-1}e^{-t}\,dt$, $\alpha>0$ is called the complementary incomplete gamma function. For negative values, gamma function can be defined as $\Gamma\left(-n+\frac{1}{2}\right) = \frac{(-1)^n \, 2^n \, \sqrt{\pi}}{1.3.5....(2n-1)}$, where $n\geq 0$ is an integer, (see, for example, [2], and [3], among others). The function defined

by $B(p,q) = \int_0^1 t^p (1-t)^{q-1} dt = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \ p>0, \ q>0, \ \text{is known as beta function (or Euler's function of the first kind)}.$ The error function is defined by $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du$, whereas the complementary error, erfc(x), is defined as $erfc(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-u^2} du = 1 - erf(x)$. The modified Bessel function of first kind, $I_v(x)$, for a real number v, is defined by $I_v(x) = \left(\frac{1}{2}x\right)^v \sum_{k=0}^\infty \frac{\left(\frac{1}{4}x^2\right)^k}{(k!)\Gamma(v+k+1)}$, where $\Gamma(.)$ denotes gamma function. Also, in terms of the confluent hypergeometric function ${}_1F_1$, it can be expressed as

$$I_{\nu}(x) = \frac{1}{\Gamma(\nu+1)} \left(\frac{x}{2}\right)^{\nu} e^{-x} {}_{1}F_{1}\left(\frac{1}{2} + \nu, 1 + 2\nu; 2x\right).$$

When v = 0, modified Bessel function of first kind, $I_0(x)$, of order 0 is obtained as follows:

$$I_0(x) = \sum_{k=0}^{\infty} \frac{\left(\frac{1}{4} x^2\right)^k}{(k!)^2} \tag{1}$$

For $\operatorname{Re}\left(\nu+\frac{1}{2}\right)>0$, $\left|\operatorname{arg}\left(z\right)\right|<\frac{\pi}{2}$; or $\operatorname{Re}\left(z\right)=0$ and $\nu=0$, we have the modified Bessel function of second kind, $K_{\nu}(x)$, of order ν , given by

$$K_{\nu}(x) = \frac{\left(\frac{z}{2}\right)^{\nu} \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\nu + \frac{1}{2}\right)} \int_{1}^{\infty} e^{-zt} (t^{2} - 1)^{\nu - \frac{1}{2}} dt,$$

or, for $\left| \arg \left(z \right) \right| < \frac{\pi}{2}$, $\operatorname{Re}(z^2) > 0$, we have $K_{\nu}(x) = \frac{1}{2} \left(\frac{z}{2} \right)^{\nu} \int_{0}^{\infty} \frac{e^{-t - \frac{z^2}{4t}}}{(t)^{\nu+1}} \, dt$. For non-integer ν , we have $K_{\nu}(x) = \frac{\pi \left\{ I_{-\nu}(x) - I_{\nu}(x) \right\}}{2 \sin(\nu \pi)}$. The function, denoted by $M_{k,m}(x)$ and defined by

$$M_{k,m}(x) = e^{-x/2} x^{m+1/2} {}_{1}F_{1}\left(\frac{1}{2} + m - k; 1 + 2m; x\right)$$

is called Whittaker function. Also, note that $M_{0,\mu}(z) = 2^{2\mu} \Gamma(\mu+1) \sqrt{z} I_{\mu}(\frac{z}{2})$.

The following Lemmas will also be needed in our derivations.

Lemma 1 (Gradshteyn and Ryzhik (2000), [5], Equation (3.381.4), Page 317). For Re $(\mu) > 0$, and Re $(\nu) > 0$,

$$\int_{0}^{\infty} t^{\nu-1} e^{-\mu t} dt = \frac{1}{\mu^{\nu}} \Gamma(\nu).$$

Lemma 2 (Gradshteyn and Ryzhik (2000), [5], Equation (6.455.2), Page 663). For Re $(\alpha + \beta) > 0$, Re $(\beta) > 0$, and Re $(\mu + \nu) > 0$,

$$\int_{0}^{\infty} t^{\mu-1} e^{-\beta t} \gamma(v, \alpha t) dt = \frac{\alpha^{\nu} \Gamma(\mu + \nu)}{\nu (\alpha + \beta)^{\mu + \nu}} {}_{2}F_{1}\left(1, \mu + \nu; \nu + 1; \frac{\alpha}{\alpha + \beta}\right)$$

Lemma 3 (Prudnikov et al. (1986), Volume 2, [18], Equation (2.8.5.6), Page 104). For $\operatorname{Re}(p) > 0$, $\operatorname{Re}(\alpha) > -1$, $\left| \operatorname{arg}(c) \right| < \frac{\pi}{4}$,

$$\int_{0}^{\infty} t^{\alpha-1} e^{-pt^{2}} erf(ct) dt = \frac{c}{\sqrt{\pi} p^{(\alpha+1)/2}} \Gamma\left(\frac{\alpha+1}{2}\right) {}_{2}F_{1}\left(\frac{1}{2}, \frac{\alpha+1}{2}; \frac{3}{2}; \frac{-c^{2}}{p}\right)$$

Lemma 4 (Prudnikov et al. (1986), Volume 2, [18], Equations (2.10.3.2), Page 150). For $Re(\alpha + \nu) > 0$, Re(p) > 0, $Re(\nu) > 0$ and Re(c) > 0,

$$\int_{0}^{\infty} x^{\alpha-1} e^{-px} \gamma(v, cx) dx = \frac{c^{\nu} \Gamma(\alpha+\nu)}{\nu(p)^{\alpha+\nu}} {}_{2}F_{1}\left(v, \alpha+\nu; \nu+1; -\frac{c}{p}\right)$$

Lemma 5 (Gradshteyn and Ryzhik (2000), [5], Equation (6.643.2), Page 720). For $\operatorname{Re}\left(\mu+\nu+\frac{1}{2}\right)>0$,

$$\int_{0}^{\infty} x^{\mu - \frac{1}{2}} e^{-\alpha x} I_{2\nu} \left(2\beta \sqrt{x} \right) dx = \frac{\Gamma\left(\mu + \nu + \frac{1}{2}\right)}{\Gamma(2\nu + 1)} \beta^{-1} e^{\beta^{2}/2\alpha} \alpha^{-\mu} M_{-\mu, \nu} \left(\frac{\beta^{2}}{\alpha}\right)$$

where $I_{\nu}(.)$ denotes modified Bessel function of the first kind, and $M_{k,m}(.)$ denotes Whittaker function, (see definition above).

2 Distribution of the Ratio $\left| \frac{X}{Y} \right|$

Let X and Y be Maxwell and Rice random variables respectively, distributed independently of each other and defined as follows.

2.1 Maxwell Distribution

A continuous random variable X is said to have a Maxwell distribution if its pdf $f_X(x)$ and cdf $F_X(x) = P(X \le x)$ are, respectively, given by

$$f_X(y) = \sqrt{\frac{2}{\pi}} a^{\frac{3}{2}} x^2 e^{-a \frac{x^2}{2}}, x > 0, a > 0$$
 (2)

and

$$F_X(x) = \frac{2\gamma\left(\frac{3}{2}, \frac{1}{2}ax^2\right)}{\sqrt{\pi}}$$

$$= erf\left(\sqrt{\frac{a}{2}}x\right) - \sqrt{\frac{2a}{\pi}}xe^{-ax^2/2}$$
(3)

where $\gamma(a, x)$ and erf(x) denote incomplete gamma and error functions respectively, (see definition above).

2.2 Rice Distribution

A continuous random variable Y is said to have a Rice distribution if its pdf $f_Y(y)$ is given by

$$f_{Y}(y) = \frac{y}{\sigma^{2}} e^{-(y^{2} + v^{2})/2\sigma^{2}} I_{0}\left(\frac{yv}{\sigma^{2}}\right), \quad y > 0, \ \sigma > 0, \ v \ge 0$$
(4)

where $I_0(y)$ denotes the modified Bessel function of the first kind, (see definition above). For |v|=0, the expression (4) reduces to a Rayleigh distribution. In what follows, we consider the derivation of the distribution of the product $\left|\frac{X}{Y}\right|$, when X and Y are Maxwell and Rice random variables respectively, distributed independently of each other and defined as above. An explicit expression for the cdf of $\left|\frac{X}{Y}\right|$ in terms of the generalized hypergeometric function ${}_2F_1$ has been derived in Theorem 2.1. In Theorem 2.2, another explicit expression for the cdf

of $\left|\frac{X}{Y}\right|$ in terms of the generalized hypergeometric function $_2F_1$, and Whittaker function $M_{k,m}$, has been derived.

Theorem 2.1

Suppose X is a Maxwell random variable with pdf $f_X(x)$ as given in (2) and cdf $F_X(x) = P(X \le x)$ given by (3) in terms of the incomplete gamma function. Also, suppose Y is a Rice random variable with pdf $f_Y(y)$ given by (4) in terms of the modified Bessel function of the first kind $I_0(y)$. Then the cdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$F(z) = \left[\frac{4 a^{3/2} \sigma^{3} z^{3} e^{-v^{2}/2\sigma^{2}}}{3\sqrt{\pi}}\right] \sum_{k=0}^{\infty} \left\{\frac{\left(\frac{v^{2}}{2\sigma^{2}}\right)^{k} \Gamma\left(k+\frac{5}{2}\right)}{\left(k!\right)^{2}} {}_{2}F_{1}\left(\frac{3}{2}, k+\frac{5}{2}; \frac{5}{2}; \frac{-az^{2}}{\sigma^{2}}\right)\right\}$$

where $_2F_1$ (.) denotes the generalized hypergeometric function of order (2, 1), (see definition above).

Proof

Using the expressions (3) for cdf of Maxwell random variable X and the expression (4) for pdf of Rice random variable Y, the cdf $F(z) = \Pr\left(\frac{|X|}{|Y|} \le z\right)$ can be expressed as

$$F(z) = \Pr(|X| \le z|Y|) = \int_{0}^{\infty} F_X(zy) f_Y(y) dy$$

$$= \left[\frac{2 e^{-v^2/2\sigma^2}}{\sqrt{\pi} \sigma^2}\right] \int_{0}^{\infty} y e^{-y^2/2\sigma^2} \gamma\left(\frac{3}{2}, \frac{1}{2}az^2y^2\right) I_0\left(\frac{vy}{\sigma^2}\right) dy$$
(5)

where y > 0, z > 0, a > 0, $\sigma > 0$, $v \ge 0$. The proof of Theorem 2.1 (i) easily follows by substituting $y^2 = t$, using the Definition (1) of modified Bessel function of first kind, $I_0(x)$, of order 0, and Lemma 4 in the integral (5) above.

Theorem 2.2

Suppose X is a Maxwell random variable with pdf $f_X(x)$ as given in (2) and cdf $F_X(x) = P(X \le x)$ given by (3) in terms of the error function. Also, suppose Y is a Rice random variable with pdf $f_Y(y)$ given by (4) in terms of the modified Bessel function of the first kind $I_0(y)$. Then the cdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$F(z) = \left\{ \frac{2\sqrt{a} \sigma z e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{\Gamma\left(k + \frac{3}{2}\right)}{\left(k!\right)^{2}} \left(\frac{v^{2}}{\sigma^{2}}\right)^{k} {}_{2}F_{1}\left(\frac{1}{2}, k + \frac{3}{2}; \frac{3}{2}; -a\sigma^{2}z^{2}\right) \right\}$$
$$-\frac{\sqrt{2a} \sigma^{2} z e^{-\frac{v^{2}(2 a \sigma^{2}z^{2} + 1)}{4\sigma^{2}(a \sigma^{2}z^{2} + 1)}}}{v(a\sigma^{2}z^{2} + 1)} M_{-1,0}\left(\frac{v^{2}}{2\sigma^{2}(a\sigma^{2}z^{2} + 1)}\right)$$

where $_2F_1(.)$ denotes the generalized hypergeometric function of order (2,1), and $M_{k,m}(.)$ denotes Whittaker function, (see definition above).

Proof

Using the expressions (3) for cdf of Maxwell random variable X and the expression (4) for pdf of Rice random variable Y, the cdf $F(z) = \Pr\left(\frac{|X|}{Y} \le z\right)$ can be expressed as

$$F(z) = \Pr(|X| \le z|Y|) = \int_{0}^{\infty} F_X(zy) f_Y(y) dy$$

$$= \left[\frac{e^{-v^2/2\sigma^2}}{\sigma^2} \right]_0^{\infty} y e^{-y^2/2\sigma^2} \left\{ erf\left(\sqrt{\frac{a}{2}} z y\right) - \sqrt{\frac{2a}{\pi}} z y e^{-\frac{a z^2 y^2}{2}} \right\} I_0\left(\frac{v y}{\sigma^2}\right) dy$$
 (6)

where y > 0, z > 0, a > 0, $\sigma > 0$, $v \ge 0$. The proof of Theorem 2.2 easily follows by substituting $y^2 = u$, using the Definition (1) of modified Bessel function of the first kind, $I_0(x)$, of order 0, and then using Lemmas 3 and 5 respectively in the integral (6) above.

Corollary 2.1

Using Lemma 2 in the integral (5) above, the cdf of $Z = \left| \frac{X}{Y} \right|$ in Theorem 2.1 can be easily expressed in the equivalent form as

$$F(z) = \left[\frac{4a^{3/2} \sigma^3 z^3 e^{-v^2/2\sigma^2}}{3\sqrt{\pi}} \right]$$

$$\times \sum_{k=0}^{\infty} \left\{ \frac{\left(\frac{v^{2}}{2\sigma^{2}}\right)^{k} \Gamma\left(k+\frac{5}{2}\right) {}_{2}F_{1}\left(1,k+\frac{5}{2};\frac{5}{2};\frac{a\sigma^{2}z^{2}}{a\sigma^{2}z^{2}+1}\right)}{(k!)^{2} \left(a\sigma^{2}z^{2}+1\right)^{k+\frac{5}{2}}} \right\}$$

Corollary 2.2

Using the definition of Whittaker function,

$$M_{k,m}(x) = e^{-x/2} x^{m+1/2} {}_{1}F_{1}\left(\frac{1}{2} + m - k; 1 + 2m; x\right),$$

the cdf of $Z = \left| \frac{X}{Y} \right|$ in Theorem 2.2 can be easily expressed in the equivalent form as

$$F(z) = \left(\frac{2\sqrt{a}\sigma z e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{k=0}^{\infty} \left\{\frac{\left(\frac{v^{2}}{\sigma^{2}}\right)^{k} \Gamma\left(k+\frac{3}{2}\right) {}_{2}F_{1}\left(\frac{1}{2},k+\frac{3}{2};\frac{3}{2};-a\sigma^{2}z^{2}\right)}{(k!)^{2}}\right\}$$

$$-\left\{\frac{\sqrt{a} \sigma z e^{-\frac{v^{2}}{2\sigma^{2}}}}{(a\sigma^{2}z^{2}+1)^{\frac{3}{2}}} {}_{1}F_{1}\left(\frac{3}{2}; 1; \frac{v^{2}}{2\sigma^{2}(a\sigma^{2}z^{2}+1)}\right)\right\}$$

where $_2F_1$ denotes the generalized hypergeometric function of order (2, 1), and $_1F_1$ denotes the generalized hypergeometric function of order (1, 1), (see definition above).

3 PDF of the Ratio $Z = \left| \frac{X}{Y} \right|$

In what follows, without loss of generality, for simplicity of computations, this section discusses the derivation of the pdf of the ratio $Z = \left| \frac{X}{Y} \right|$, when X and Y are Rice and Maxwell random variables distributed according to (4) and (2), respectively, and independently of each other. An explicit expression for the pdf of the ratio $Z = \left| \frac{X}{Y} \right|$ in terms of the gamma function has been derived in Theorem 3.1. The expression for the kth moment of RV $Z = \left| \frac{X}{Y} \right|$ in terms of beta function has been derived in Theorem 3.2.

Theorem 3.1

Suppose X and Y are Rice and Maxwell random variables having pdf given by (4) and (2), respectively. Then the pdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$f_{Z}(z) = \left(\frac{a^{\frac{3}{2}} e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right) v^{2n} z^{2n+1}}{2^{n-2} \sigma^{2n-3} (n!)^{2} (z^{2} + a \sigma^{2})^{n+\frac{5}{2}}}$$
(7)

Proof

The pdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$f_{Z}(z) = \int_{0}^{\infty} y f_{X}(z y) f_{Y}(y) dy$$

$$= \left(\sqrt{\frac{2}{\pi}} \frac{a^{\frac{3}{2}}}{\sigma^{2}} e^{-v^{2}/2\sigma^{2}} z \right) \int_{0}^{\infty} y^{4} e^{-\frac{z^{2}y^{2}}{2\sigma^{2}} - \frac{ay^{2}}{2}} I_{0}\left(\frac{vzy}{\sigma^{2}}\right) dy, \tag{8}$$

where y > 0, z > 0, a > 0, $\sigma > 0$, $v \ge 0$. The proof of Theorem 3.1 easily follows by using the Definition (1) of modified Bessel function of the first kind, $I_0(x)$, of order 0, substituting $y^2 = t$, and then using Lemma 1 in the integral (8) above.

Theorem 3.2

Suppose X and Y are Rice and Maxwell random variables having pdf given by (4) and (2), respectively. Then the pdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$f_{Z}(z) = \left(3\sqrt{2} a^{3/2} \sigma^{2} e^{-v^{2}/2\sigma^{2}}\right) \frac{e^{\frac{v^{2} z^{2}}{4\sigma^{2}(z^{2}+a \sigma^{2})}}}{(z^{2}+a \sigma^{2})} M_{-2,0}\left(\frac{v^{2} z^{2}}{2\sigma^{2}(z^{2}+a \sigma^{2})}\right)$$

where $M_{k,m}(.)$ denotes Whittaker function, (see definition above).

Proof

The pdf of $Z = \left| \frac{X}{Y} \right|$ can be expressed as

$$f_{Z}(z) = \int_{0}^{\infty} y f_{X}(z y) f_{Y}(y) dy$$

$$= \left(\sqrt{\frac{2}{\pi}} \frac{a^{\frac{3}{2}}}{\sigma^{2}} e^{-v^{2}/2\sigma^{2}} z \right) \int_{0}^{\infty} y^{4} e^{-\frac{z^{2}y^{2}}{2\sigma^{2}} - \frac{ay^{2}}{2}} I_{0}\left(\frac{vzy}{\sigma^{2}}\right) dy, \tag{9}$$

where y > 0, z > 0, a > 0, $\sigma > 0$, $v \ge 0$. The proof of Theorem 3.2 easily follows by substituting $y^2 = t$, and then using Lemma 5 in the integral (9) above.

Corollary 3.1

Using the definition $M_{k,m}(x) = e^{-x/2} x^{m+1/2} {}_{1}F_{1}\left(\frac{1}{2} + m - k; 1 + 2m; x\right)$ of Whittaker function, the pdf of $Z = \left|\frac{X}{V}\right|$ in Theorem 3.2 can be easily expressed in the equivalent form as

$$f_{z}(z) = \left(3 a^{3/2} \sigma v e^{-v^{2}/2\sigma^{2}}\right) \frac{z}{(z^{2} + a \sigma^{2})^{3/2}} {}_{1}F_{1}\left(\frac{5}{2}; 1; \frac{v^{2} z^{2}}{2\sigma^{2}(z^{2} + a \sigma^{2})}\right)$$
(10)

where $_1F_1$ denotes the generalized hypergeometric function of order (1,1), (see definition above).

4 kth Moment of the RV $z = \left| \frac{X}{Y} \right|$

Theorem 4.1

If Z is a random variable with pdf given by (7), then its kth moment can be expressed as

$$E(Z^{k}) = \left(\frac{a^{\frac{k}{2}}e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right)v^{2n}}{2^{n-1}\sigma^{2n-k}(n!)^{2}} B\left(\frac{2n + k + 2}{2}, \frac{3 - k}{2}\right), \quad -1 \le k < 3,$$

where B(p, q), p > 0, q > 0, denotes Beta function (or Euler's function of the first kind), (see definition above).

Proof We have

$$E(Z^{k}) = \left(\frac{a^{\frac{3}{2}} e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right) v^{2n}}{2^{n-2} \sigma^{2n-3} (n!)^{2}} \int_{0}^{\infty} z^{k} \frac{z^{2n+1}}{\left(z^{2} + a \sigma^{2}\right)^{n+\frac{5}{2}}} dz$$
(11)

Substituting $z^2 = u$, and using the equation (3.194.3 / page 285) from Gradshteyn and Ryzhik, [5], in (11), the result of Theorem 4.1 easily follows, provided $-1 \le k < 3$. It is evident from Theorem 4.1 that only the moments of order k = 1 and k = 2 exist and are given by

$$\alpha_{1} = E(Z) = \left(\frac{a^{\frac{1}{2}} e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right) v^{2n}}{2^{n-1} \sigma^{2n-1} (n!)^{2}} B\left(\frac{2n+3}{2}, 1\right), \text{ and}$$

$$\alpha_{2} = E(Z^{2}) = \left(\frac{a e^{-v^{2}/2\sigma^{2}}}{\sqrt{\pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right) v^{2n}}{2^{n-1} \sigma^{2n-2} (n!)^{2}} B\left(n + 2, \frac{1}{2}\right).$$

Using the above expressions for α_1 and α_2 , one can easily determine the variance given by

$$\beta_2 = Var Z = \alpha_2 - \alpha_1^2.$$

Further, the first negative moment of Z (by taking k = -1 in Theorem 4.1) is given by

$$E(Z^{-1}) = E\left(\frac{1}{Z}\right) = \left(\frac{e^{-v^2/2\sigma^2}}{\sqrt{a \pi}}\right) \sum_{n=0}^{\infty} \frac{\Gamma\left(n + \frac{5}{2}\right)v^{2n}}{2^{n-1}\sigma^{2n+1}(n!)^2} B\left(\frac{2n+1}{2}, 2\right).$$

For a discussion on the existence of the first negative moment of a continuous random variable and its applications, the interested readers are referred to [7, Section 6.9.1, P. 242] and references therein.

Theorem 4.2

If Z is a random variable with pdf given by (10), then its kth moment can be expressed as

$$E(Z^{k}) = \left(\frac{3}{2} v \sigma^{k} a^{\frac{k+2}{2}} e^{-v^{2}/2\sigma^{2}}\right) B\left(\frac{k+2}{2}, \frac{1-k}{2}\right) {}_{2}F_{2}\left(\frac{k+2}{2}, \frac{5}{2}; \frac{3}{2}, 1; \frac{v^{2}}{2\sigma^{2}}\right),$$

where -2 < k < 1, and B(p,q), p > 0, q > 0, denotes Beta function (or Euler's function of the first kind) and $_2F_2$ denotes the generalized hypergeometric function of order (2,2), (see definition above).

Proof We have

$$E(Z^{k}) = \left(3 a^{3/2} \sigma v e^{-v^{2}/2\sigma^{2}}\right) \int_{0}^{\infty} z^{k} \frac{{}_{1}F_{1}\left(\frac{5}{2}; 1; \frac{v^{2} z^{2}}{2\sigma^{2}(z^{2} + a \sigma^{2})}\right)}{(z^{2} + a \sigma^{2})^{3/2}} z dz$$
(12)

Substituting $z^2 = u$, and using the equation (2.22.2.2) / page 335) from Prudnikov et al. (1986), Volume 3, [18], in (12), the result of Theorem 4.2 easily follows, provided -2 < k < 1. It is evident that only the first negative moment of Z can be obtained from Theorem 4.2 by taking k = -1. This is given by

$$E(Z^{-1}) = E\left(\frac{1}{Z}\right) = \left(\frac{3\nu a^{1/2} e^{-\nu^2/2\sigma^2}}{2\sigma}\right) B\left(\frac{1}{2}, 1\right) {}_{2}F_{2}\left(\frac{1}{2}, \frac{5}{2}; \frac{3}{2}, 1; \frac{\nu^2}{2\sigma^2}\right).$$

5 Concluding Remarks

This paper has derived the distribution of the ratio of two independent random variables X and Y, where X has Maxwell and Y has Rice distribution. The pdf and kth moment of the ratio of two variables are also given. The distribution is obtained as a function of hypergeometric and Whittaker functions, where as the pdf has been obtained as a function of gamma, Whittaker, and hypergeometric functions. We hope the findings of the paper will be useful for the practitioners that have been mentioned in Section 1.

Acknowledgment

The authors would like to thank the editor and referee for their useful comments and suggestions which considerably improved the quality of the paper.

References

- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1970.
- [2] G. E. Andrews, R. Askey and R. Roy, Special functions. Cambridge University Press, Cambridge, 1999.
- [3] H. Bohr and I. Mollerup, Loerbog I matematisk Analyse, Vol. 3, Kopenhagen, 1922.
- [4] J. Galambos and I. Simonelli, Products of Random Variables Applications to Problems of Physics and to Arithmetical Functions, CRC Press, Boca Raton / Atlanta, 2005.
- [5] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (6th edition). Academic Press. San Diego, 2000.
- [6] H. G. Grubel, Internationally diversified portfolios: welfare gains capital flows, American Economic Review, 58 (1968), 1299 1314.
- [7] A. I. Khuri, Advanced Calculus with Applications in Statistics. John Wiley & Sons, Inc. New York, 1993.

- [8] S. Kotz, Y. Lumelskii and M. Pensky, The stress-strength model and its generalizations: Theory and applications. World Scientific Publishing Co., River Edge, N. J., 2003.
- [9] P. J. Korhonen and S. C. Narula, The probability distribution of the ratio of the absolute values of two normal variables, Journal of Statistical Computation and Simulation, 33 (1989), 173 182.
- [10] R. Y. Lee, B. S. Holland and J. A. Flueck, Distribution of a ratio of correlated gamma random variables, SIAM Journal on Applied Mathematics, 36 (1979), 304 320.
- [11] G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables, Journal of the American Statistical Association, 60 (1965), 193 204.
- [12] S. Nadarajah, Products, and ratios for a bivariate gamma distribution, Applied Mathematics and Computation, Vol. 171 (2005), Issue 1, 581 595.
- [13] S. Nadarajah, On the Product and Ratio of Laplace and Bessel Random Variables, Journal of Applied Mathematics, 4 (2005), 393 402.
- [14] S. Nadarajah and A. A. Gupta, On the Product and Ratio of Bessel Random Variables, International Journal of Mathematics and Mathematical Sciences, 18 (2005), 2977 2989.
- [15] S. Nadarajah and S. Kotz, On the Product and Ratio of Pearson Type VII and Laplacel Random Variables, Austrian Journal of Statistics, Vol. 34 (1) (2005), 11 23.
- [16] T. Pham-Gia, Distributions of the ratios of independent beta variables and applications, Communications in Statistics—Theory and Methods, 29 (2000), 2693 2715.
- [17] S. J. Press, The t ratio distribution, Journal of the American Statistical Association, 64 (1969), 242 252.
- [18] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series (Volumes 1, 2, and 3). Gordon and Breach Science Publishers, Amsterdam, 1986.

Received: May 23, 2006