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Primes in the Interval [2n, 3n]
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Abstract. Is it true that for all integer n > 1 and k ≤ n there exists a
prime number in the interval [kn, (k + 1)n]? The case k = 1 is the Bertrand’s
postulate which was proved for the first time by P. L. Chebyshev in 1850, and
simplified later by P. Erdős in 1932, see [2]. The present paper deals with the
case k = 2. A positive answer to the problem for any k ≤ n implies a positive
answer to the old problem whether there is always a prime in the interval
[n2, n2 + n], see [1, p. 11].
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1. the result

Throughout the paper ln(x) is the logarithm with base e of x and π(x) is
the number of prime numbers not greater than x. We let n run through the
natural numbers and p through the primes.

Lemma 1.1. The following inequalities hold:

1. If n is even then (
3n
2

n

)
<

√
6.75 n.

2. If n is even such that n > 152 then(
3n
2

n

)
>

√
6.5 n.

3. If n is odd and n > 7 then(
3n+1

2

n

)
<

√
6.75 n−1.
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4. If n > 945 then

(
6.5√
27

)n > (3n)
√

3n
2 .

Proof. (1,2) By induction on n. We have(
3

2

)
< 6.75 and

(
3·154

2

154

)
>

√
6.5 154.

Assume now that the two inequalities hold for
(
3n
2n

)
. Then(

3n + 3

2n + 2

)
=

(
3n

2n

)
(3n + 1)(3n + 2)(3n + 3)

(n + 1)(2n + 1)(2n + 2)

=

(
3n

2n

)
3(3n + 1)(3n + 2)

(2n + 1)(2n + 2)

=

(
3n

2n

)
27n2 + 27n + 6

4n2 + 6n + 2
.

It now suffices to note that for all n

27n2 + 27n + 6

4n2 + 6n + 2
< 6.75

and for all n > 12

6.5 <
27n2 + 27n + 6

4n2 + 6n + 2
.

(3) By induction on n. We have
(
14
9

)
< (6.75)4. Assume now that the result is

true for
(
3n+2
2n+1

)
. Then(

3n + 5

2n + 3

)
=

(
3n + 2

2n + 1

)
3(3n + 4)(3n + 5)

2(n + 2)(2n + 3)

< (6.75)n 6.75

= (6.75)n+1.

(4) Note that the following three inequalities are equivalent:

(
6.5√
27

)n > (3n)
√

3n
2

n ln
6.5√
27

>

√
3n

2
ln 3n

2√
3

ln
6.5√
27

>
ln 3n√

n
.

Then the result follows since the function ln 3x√
x

is decreasing and

2√
3

ln
6.5√
27

>
ln(3 · 946)√

946
.
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Lemma 1.2. 1. If n is even then
∏

n
2
<p≤ 3n

4

p ·
∏

n<p≤ 3n
2

p <

(
3n
2

n

)
.

2. If n is odd then
∏

n+1
2

<p≤ 3n
4

p ·
∏

n<p≤ 3n+1
2

p <

(
3n+1

2

n

)
.

Proof. (1) We have (
3n
2

n

)
=

(n + 1) · · · 3n
2

n
2
!

.(1.1)

Then clearly
∏

n<p≤ 3n
2

p divides
( 3n

2
n

)
. Furthermore, if n

2
< p ≤ 3n

4
then 2p

occurs in the numerator of (1.1) but p does not occur in the denominator.
Then after simplification of 2p with an even number from the denominator

we get the prime factor p in
( 3n

2
n

)
. Thus

∏
n
2

<p≤ 3n
4

p divides
( 3n

2
n

)
too and the

required inequality follows.
(2) Similar to the first part.

To prove Bertrand’s postulate, P. Erdős needed to check the result for n =
2, . . . , 113, refer to [3, p. 173]. Our theorem requires a separate check for
n = 2, . . . , 945 but we omitted to list them for reasons of space.

Theorem 1.3. For any positive integer n > 1 there is a prime number between
2n and 3n.

Proof. It can be checked (using Mathematica for instance) that for n = 2, . . . , 945
there is always a prime between 2n and 3n. Now let n > 945. As(

3n

2n

)
=

(2n + 1)(2n + 2) · · ·3n
1 · 2 · · ·n ,(1.2)

the product of primes between 2n and 3n, if there are any, divides
(
3n
2n

)
. Fol-

lowing the notation used in [3], we let

T1 =
∏

p≤√
3n

pβ(p), T2 =
∏

√
3n<p≤2n

pβ(p), T3 =
∏

2n+1≤p≤3n

p,

such that (
3n

2n

)
= T1T2T3.(1.3)

The prime decomposition of
(
3n
2n

)
implies that the powers in T2 are less than 2,

see [3, p. 24] for the prime decomposition of
(

n
j

)
. Moreover, we claim that if a

prime p satisfies 3n
4

< p ≤ n then its power in T2 is 0. Clearly, a prime p with
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this condition appears in the denominator of (1.2) but 2p does not, and 3p
appears in the numerator of (1.2) but 4p does not. This way p cancels and the
claim follows. Furthermore, if 3n

2
< p ≤ 2n then its power in T2 is 0 because

such a prime p is neither in the denominator nor in the numerator of (1.2) and
2p > 3n. Now by Lemma 1.2 and the fact that

∏
p≤x p < 4x, refer to [3, p.

167], we have that:

• If n is even then

T2 <
∏

√
3n<p≤n

2

p ·
∏

n
2
<p≤ 3n

4

p ·
∏

n<p≤ 3n
2

p

< 4
n
2

(
3n
2

n

)

< 4
n
2 (6.75)

n
2

=
√

27 n.

(1.4)

• If n is odd then

T2 <
∏

√
3n<p≤n+1

2

p ·
∏

n+1
2

<p≤ 3n
4

p ·
∏

n<p≤ 3n+1
2

p

< 4
n+1

2

( 3n+1
2

n

)

< 4
n+1

2 (6.75)
n−1

2

= 4 ·
√

27 n−1

<
√

27 n.

(1.5)

Thus by (1.4) and (1.5) we find the following upper bound for T2:

T2 <
√

27 n.(1.6)

In addition, the prime decomposition of
(
3n
2n

)
yields the following upper bound

for T1:

T1 < (3n)π(
√

3n).(1.7)

See [3, p. 24]. Then by virtue of Lemma 1.1(2), equality (1.3), and the
inequalities(1.6), and (1.7) we find

(6.5)n < T1T2T3 < (3n)π(
√

3n)
√

27 nT3,

which implies that

T3 >

(
6.5√
27

)n
1

(3n)π(
√

3n)
.
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But π(
√

3n) ≤
√

3n
2

. Then

T3 >

(
6.5√
27

)n
1

(3n)
√

3n/2
> 1,(1.8)

where the second inequality follows by Lemma 1.1(4). Consequently, the prod-
uct T3 of primes between 2n and 3n is greater than 1 and therefore the existence
of such numbers follows.

Corollary 1.4. For any positive integer n ≥ 2 there exists a prime number p
satisfying

n < p <
3(n + 1)

2
.

Proof. The result is clear for n = 2. For even n > 2 the result follows by
Theorem 1.3. Assume now that n = 2k + 1 for a positive integer k ≥ 1. Then
by Theorem 1.3 there is a prime p satisfying

2(k + 1) < p < 3(k + 1) =
3(n + 1)

2
,

and the result follows.
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