Int. J. Contemp. Math. Sci., Vol. 1, 2006, no. 13, 617-621

Primes in the Interval $[2 n, 3 n]$

M. El Bachraoui
School of Science and Engineering
Al Akhawayn University in Ifrane
P.O.Box 2096, Ifrane 53000, Morocco
m.elbachraoui@aui.ma

Abstract

Is it true that for all integer $n>1$ and $k \leq n$ there exists a prime number in the interval $[k n,(k+1) n]$? The case $k=1$ is the Bertrand's postulate which was proved for the first time by P. L. Chebyshev in 1850, and simplified later by P. Erdős in 1932, see [2]. The present paper deals with the case $k=2$. A positive answer to the problem for any $k \leq n$ implies a positive answer to the old problem whether there is always a prime in the interval $\left[n^{2}, n^{2}+n\right]$, see [1, p. 11].

Keywords: prime numbers

Mathematics Subject Classification: 51-01

1. THE RESULT

Throughout the paper $\ln (x)$ is the logarithm with base e of x and $\pi(x)$ is the number of prime numbers not greater than x. We let n run through the natural numbers and p through the primes.

Lemma 1.1. The following inequalities hold:

1. If n is even then

$$
\binom{\frac{3 n}{2}}{n}<\sqrt{6.75}^{n}
$$

2. If n is even such that $n>152$ then

$$
\binom{\frac{3 n}{2}}{n}>\sqrt{6.5}^{n}
$$

3. If n is odd and $n>7$ then

$$
\binom{\frac{3 n+1}{2}}{n}<\sqrt{6.75}^{n-1}
$$

4. If $n>945$ then

$$
\left(\frac{6.5}{\sqrt{27}}\right)^{n}>(3 n)^{\frac{\sqrt{3 n}}{2}}
$$

Proof. $(1,2)$ By induction on n. We have

$$
\binom{3}{2}<6.75 \text { and }\binom{\frac{3 \cdot 154}{2}}{154}>\sqrt{6.5}^{154}
$$

Assume now that the two inequalities hold for $\binom{3 n}{2 n}$. Then

$$
\begin{aligned}
\binom{3 n+3}{2 n+2} & =\binom{3 n}{2 n} \frac{(3 n+1)(3 n+2)(3 n+3)}{(n+1)(2 n+1)(2 n+2)} \\
& =\binom{3 n}{2 n} \frac{3(3 n+1)(3 n+2)}{(2 n+1)(2 n+2)} \\
& =\binom{3 n}{2 n} \frac{27 n^{2}+27 n+6}{4 n^{2}+6 n+2}
\end{aligned}
$$

It now suffices to note that for all n

$$
\frac{27 n^{2}+27 n+6}{4 n^{2}+6 n+2}<6.75
$$

and for all $n>12$

$$
6.5<\frac{27 n^{2}+27 n+6}{4 n^{2}+6 n+2}
$$

(3) By induction on n. We have $\binom{14}{9}<(6.75)^{4}$. Assume now that the result is true for $\binom{3 n+2}{2 n+1}$. Then

$$
\begin{aligned}
\binom{3 n+5}{2 n+3} & =\binom{3 n+2}{2 n+1} \frac{3(3 n+4)(3 n+5)}{2(n+2)(2 n+3)} \\
& <(6.75)^{n} 6.75 \\
& =(6.75)^{n+1}
\end{aligned}
$$

(4) Note that the following three inequalities are equivalent:

$$
\begin{gathered}
\left(\frac{6.5}{\sqrt{27}}\right)^{n}>(3 n)^{\frac{\sqrt{3 n}}{2}} \\
n \ln \frac{6.5}{\sqrt{27}}>\frac{\sqrt{3 n}}{2} \ln 3 n \\
\frac{2}{\sqrt{3}} \ln \frac{6.5}{\sqrt{27}}>\frac{\ln 3 n}{\sqrt{n}}
\end{gathered}
$$

Then the result follows since the function $\frac{\ln 3 x}{\sqrt{x}}$ is decreasing and

$$
\frac{2}{\sqrt{3}} \ln \frac{6.5}{\sqrt{27}}>\frac{\ln (3 \cdot 946)}{\sqrt{946}}
$$

Lemma 1.2. 1. If n is even then

$$
\prod_{\frac{n}{2}<p \leq \frac{3 n}{4}} p \cdot \prod_{n<p \leq \frac{3 n}{2}} p<\binom{\frac{3 n}{2}}{n} .
$$

2. If n is odd then

$$
\prod_{\frac{n+1}{2}<p \leq \frac{3 n}{4}} p \cdot \prod_{n<p \leq \frac{3 n+1}{2}} p<\binom{\frac{3 n+1}{2}}{n} .
$$

Proof. (1) We have

$$
\begin{equation*}
\binom{\frac{3 n}{2}}{n}=\frac{(n+1) \cdots \frac{3 n}{2}}{\frac{n}{2}!} . \tag{1.1}
\end{equation*}
$$

Then clearly $\prod_{n<p \leq \frac{3 n}{2}} p$ divides $\binom{\frac{3 n}{2}}{n}$. Furthermore, if $\frac{n}{2}<p \leq \frac{3 n}{4}$ then $2 p$ occurs in the numerator of (1.1) but p does not occur in the denominator. Then after simplification of $2 p$ with an even number from the denominator we get the prime factor p in $\binom{\frac{3 n}{2}}{n}$. Thus $\prod_{\frac{n}{2}<p \leq \frac{3 n}{4}} p$ divides $\binom{\frac{3 n}{n}}{n}$ too and the required inequality follows.
(2) Similar to the first part.

To prove Bertrand's postulate, P. Erdős needed to check the result for $n=$ $2, \ldots, 113$, refer to [3, p. 173]. Our theorem requires a separate check for $n=2, \ldots, 945$ but we omitted to list them for reasons of space.

Theorem 1.3. For any positive integer $n>1$ there is a prime number between $2 n$ and $3 n$.

Proof. It can be checked (using Mathematica for instance) that for $n=2, \ldots, 945$ there is always a prime between $2 n$ and $3 n$. Now let $n>945$. As

$$
\begin{equation*}
\binom{3 n}{2 n}=\frac{(2 n+1)(2 n+2) \cdots 3 n}{1 \cdot 2 \cdots n} \tag{1.2}
\end{equation*}
$$

the product of primes between $2 n$ and $3 n$, if there are any, divides $\binom{3 n}{2 n}$. Following the notation used in [3], we let

$$
T_{1}=\prod_{p \leq \sqrt{3 n}} p^{\beta(p)}, \quad T_{2}=\prod_{\sqrt{3 n}<p \leq 2 n} p^{\beta(p)}, \quad T_{3}=\prod_{2 n+1 \leq p \leq 3 n} p
$$

such that

$$
\begin{equation*}
\binom{3 n}{2 n}=T_{1} T_{2} T_{3} \tag{1.3}
\end{equation*}
$$

The prime decomposition of $\binom{3 n}{2 n}$ implies that the powers in T_{2} are less than 2, see [3, p. 24] for the prime decomposition of $\binom{n}{j}$. Moreover, we claim that if a prime p satisfies $\frac{3 n}{4}<p \leq n$ then its power in T_{2} is 0 . Clearly, a prime p with
this condition appears in the denominator of (1.2) but $2 p$ does not, and $3 p$ appears in the numerator of (1.2) but $4 p$ does not. This way p cancels and the claim follows. Furthermore, if $\frac{3 n}{2}<p \leq 2 n$ then its power in T_{2} is 0 because such a prime p is neither in the denominator nor in the numerator of (1.2) and $2 p>3 n$. Now by Lemma 1.2 and the fact that $\prod_{p \leq x} p<4^{x}$, refer to $[3, \mathrm{p}$. 167], we have that:

- If n is even then

$$
\begin{align*}
T_{2} & <\prod_{\sqrt{3 n}<p \leq \frac{n}{2}} p \cdot \prod_{\frac{n}{2}<p \leq \frac{3 n}{4}} p \cdot \prod_{n<p \leq \frac{3 n}{2}} p \\
& <4^{\frac{n}{2}}\binom{\frac{3 n}{2}}{n} \tag{1.4}\\
& <4^{\frac{n}{2}}(6.75)^{\frac{n}{2}} \\
& =\sqrt{27}^{n} .
\end{align*}
$$

- If n is odd then

$$
\begin{align*}
T_{2} & <\prod_{\sqrt{3 n}<p \leq \frac{n+1}{2}} p \cdot \prod_{\frac{n+1}{2}<p \leq \frac{3 n}{4}} p \cdot \prod_{n<p \leq \frac{3 n+1}{2}} p \\
& <4^{\frac{n+1}{2}}\binom{\frac{3 n+1}{2}}{n} \tag{1.5}\\
& <4^{\frac{n+1}{2}}(6.75)^{\frac{n-1}{2}} \\
& =4 \cdot \sqrt{27}^{n-1} \\
& <\sqrt{27}^{n}
\end{align*}
$$

Thus by (1.4) and (1.5) we find the following upper bound for T_{2} :

$$
\begin{equation*}
T_{2}<\sqrt{27}^{n} \tag{1.6}
\end{equation*}
$$

In addition, the prime decomposition of $\binom{3 n}{2 n}$ yields the following upper bound for T_{1} :

$$
\begin{equation*}
T_{1}<(3 n)^{\pi(\sqrt{3 n})} \tag{1.7}
\end{equation*}
$$

See [3, p. 24]. Then by virtue of Lemma $1.1(2)$, equality (1.3), and the inequalities(1.6), and (1.7) we find

$$
(6.5)^{n}<T_{1} T_{2} T_{3}<(3 n)^{\pi(\sqrt{3 n})} \sqrt{27}^{n} T_{3}
$$

which implies that

$$
T_{3}>\left(\frac{6.5}{\sqrt{27}}\right)^{n} \frac{1}{(3 n)^{\pi(\sqrt{3 n})}}
$$

But $\pi(\sqrt{3 n}) \leq \frac{\sqrt{3 n}}{2}$. Then

$$
\begin{equation*}
T_{3}>\left(\frac{6.5}{\sqrt{27}}\right)^{n} \frac{1}{(3 n)^{\sqrt{3 n} / 2}}>1 \tag{1.8}
\end{equation*}
$$

where the second inequality follows by Lemma 1.1(4). Consequently, the product T_{3} of primes between $2 n$ and $3 n$ is greater than 1 and therefore the existence of such numbers follows.

Corollary 1.4. For any positive integer $n \geq 2$ there exists a prime number p satisfying

$$
n<p<\frac{3(n+1)}{2}
$$

Proof. The result is clear for $n=2$. For even $n>2$ the result follows by Theorem 1.3. Assume now that $n=2 k+1$ for a positive integer $k \geq 1$. Then by Theorem 1.3 there is a prime p satisfying

$$
2(k+1)<p<3(k+1)=\frac{3(n+1)}{2}
$$

and the result follows.

References

[1] T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, 1998. xii +338 pp.
[2] P. Erdős. Beweis eines satzes von tschebyschef. Acta Litt. Univ. Sci., Szeged, Sect. Math., 5:194-198, 1932.
[3] P. Erdős and J. Surányi. Topics in the theory of numbers. Undergraduate Texts in Mathematics. Springer Verlag, 2003. viii +287 pp.

Received: May 16, 2006

