Primes in the Interval [2n, 3n]

M. El Bachraoui

School of Science and Engineering Al Akhawayn University in Ifrane P.O.Box 2096, Ifrane 53000, Morocco m.elbachraoui@aui.ma

Abstract. Is it true that for all integer n > 1 and $k \le n$ there exists a prime number in the interval [kn, (k+1)n]? The case k = 1 is the Bertrand's postulate which was proved for the first time by P. L. Chebyshev in 1850, and simplified later by P. Erdős in 1932, see [2]. The present paper deals with the case k = 2. A positive answer to the problem for any $k \le n$ implies a positive answer to the old problem whether there is always a prime in the interval $[n^2, n^2 + n]$, see [1, p. 11].

Keywords: prime numbers

Mathematics Subject Classification: 51-01

1. The result

Throughout the paper $\ln(x)$ is the logarithm with base e of x and $\pi(x)$ is the number of prime numbers not greater than x. We let n run through the natural numbers and p through the primes.

Lemma 1.1. The following inequalities hold:

1. If n is even then

$$\binom{\frac{3n}{2}}{n} < \sqrt{6.75}^{n}.$$

2. If n is even such that n > 152 then

$$\binom{\frac{3n}{2}}{n} > \sqrt{6.5}^{n}.$$

3. If n is odd and n > 7 then

$$\binom{\frac{3n+1}{2}}{n} < \sqrt{6.75} \ ^{n-1}.$$

4. If n > 945 then

$$(\frac{6.5}{\sqrt{27}})^n > (3n)^{\frac{\sqrt{3n}}{2}}.$$

Proof. (1,2) By induction on n. We have

$$\binom{3}{2} < 6.75 \text{ and } \binom{\frac{3\cdot154}{2}}{154} > \sqrt{6.5}^{154}$$

Assume now that the two inequalities hold for $\binom{3n}{2n}$. Then

$$\begin{pmatrix} 3n+3\\2n+2 \end{pmatrix} = \begin{pmatrix} 3n\\2n \end{pmatrix} \frac{(3n+1)(3n+2)(3n+3)}{(n+1)(2n+1)(2n+2)}$$
$$= \begin{pmatrix} 3n\\2n \end{pmatrix} \frac{3(3n+1)(3n+2)}{(2n+1)(2n+2)} \\= \begin{pmatrix} 3n\\2n \end{pmatrix} \frac{27n^2 + 27n + 6}{4n^2 + 6n + 2}.$$

It now suffices to note that for all n

$$\frac{27n^2 + 27n + 6}{4n^2 + 6n + 2} < 6.75$$

and for all n > 12

$$6.5 < \frac{27n^2 + 27n + 6}{4n^2 + 6n + 2}.$$

(3) By induction on *n*. We have $\binom{14}{9} < (6.75)^4$. Assume now that the result is true for $\binom{3n+2}{2n+1}$. Then

$$\binom{3n+5}{2n+3} = \binom{3n+2}{2n+1} \frac{3(3n+4)(3n+5)}{2(n+2)(2n+3)} < (6.75)^n 6.75 = (6.75)^{n+1}.$$

(4) Note that the following three inequalities are equivalent:

$$(\frac{6.5}{\sqrt{27}})^n > (3n)^{\frac{\sqrt{3n}}{2}}$$
$$n \ln \frac{6.5}{\sqrt{27}} > \frac{\sqrt{3n}}{2} \ln 3n$$
$$\frac{2}{\sqrt{3}} \ln \frac{6.5}{\sqrt{27}} > \frac{\ln 3n}{\sqrt{n}}.$$

Then the result follows since the function $\frac{\ln 3x}{\sqrt{x}}$ is decreasing and

$$\frac{2}{\sqrt{3}}\ln\frac{6.5}{\sqrt{27}} > \frac{\ln(3\cdot946)}{\sqrt{946}}$$

618

Lemma 1.2. *1.* If n is even then

$$\prod_{\frac{n}{2}$$

2. If n is odd then

$$\prod_{\substack{n+1\\2}$$

Proof. (1) We have

(1.1)
$$\binom{\frac{3n}{2}}{n} = \frac{(n+1)\cdots\frac{3n}{2}}{\frac{n}{2}!}.$$

Then clearly $\prod_{n divides <math>\binom{\frac{3n}{2}}{n}$. Furthermore, if $\frac{n}{2} then <math>2p$ occurs in the numerator of (1.1) but p does not occur in the denominator. Then after simplification of 2p with an even number from the denominator we get the prime factor p in $\binom{\frac{3n}{2}}{n}$. Thus $\prod_{\frac{n}{2} divides <math>\binom{\frac{3n}{2}}{n}$ too and the required inequality follows.

(2) Similar to the first part.

To prove Bertrand's postulate, P. Erdős needed to check the result for $n = 2, \ldots, 113$, refer to [3, p. 173]. Our theorem requires a separate check for $n = 2, \ldots, 945$ but we omitted to list them for reasons of space.

Theorem 1.3. For any positive integer n > 1 there is a prime number between 2n and 3n.

Proof. It can be checked (using Mathematica for instance) that for n = 2, ..., 945 there is always a prime between 2n and 3n. Now let n > 945. As

(1.2)
$$\binom{3n}{2n} = \frac{(2n+1)(2n+2)\cdots 3n}{1\cdot 2\cdots n}$$

the product of primes between 2n and 3n, if there are any, divides $\binom{3n}{2n}$. Following the notation used in [3], we let

$$T_1 = \prod_{p \le \sqrt{3n}} p^{\beta(p)}, \quad T_2 = \prod_{\sqrt{3n}$$

such that

(1.3)
$$\binom{3n}{2n} = T_1 T_2 T_3$$

The prime decomposition of $\binom{3n}{2n}$ implies that the powers in T_2 are less than 2, see [3, p. 24] for the prime decomposition of $\binom{n}{j}$. Moreover, we claim that if a prime p satisfies $\frac{3n}{4} then its power in <math>T_2$ is 0. Clearly, a prime p with

619

M. El Bachraoui

this condition appears in the denominator of (1.2) but 2p does not, and 3p appears in the numerator of (1.2) but 4p does not. This way p cancels and the claim follows. Furthermore, if $\frac{3n}{2} then its power in <math>T_2$ is 0 because such a prime p is neither in the denominator nor in the numerator of (1.2) and 2p > 3n. Now by Lemma 1.2 and the fact that $\prod_{p \leq x} p < 4^x$, refer to [3, p. 167], we have that:

• If n is even then

(1.4)

$$T_{2} < \prod_{\sqrt{3n} < p \le \frac{n}{2}} p \cdot \prod_{\frac{n}{2} < p \le \frac{3n}{4}} p \cdot \prod_{n < p \le \frac{3n}{2}} p$$

$$< 4^{\frac{n}{2}} {\binom{\frac{3n}{2}}{n}}$$

$$< 4^{\frac{n}{2}} (6.75)^{\frac{n}{2}}$$

$$= \sqrt{27}^{n}.$$

• If n is odd then

(1.5)

$$T_{2} < \prod_{\sqrt{3n} < p \le \frac{n+1}{2}} p \cdot \prod_{\frac{n+1}{2} < p \le \frac{3n}{4}} p \cdot \prod_{n < p \le \frac{3n+1}{2}} p \\ < 4^{\frac{n+1}{2}} {\binom{3n+1}{2}} \\ n \\ < 4^{\frac{n+1}{2}} (6.75)^{\frac{n-1}{2}} \\ = 4 \cdot \sqrt{27}^{n-1} \\ < \sqrt{27}^{n}.$$

Thus by (1.4) and (1.5) we find the following upper bound for T_2 :

(1.6)
$$T_2 < \sqrt{27}^n$$

In addition, the prime decomposition of $\binom{3n}{2n}$ yields the following upper bound for T_1 :

(1.7)
$$T_1 < (3n)^{\pi(\sqrt{3n})}.$$

See [3, p. 24]. Then by virtue of Lemma 1.1(2), equality (1.3), and the inequalities (1.6), and (1.7) we find

$$(6.5)^n < T_1 T_2 T_3 < (3n)^{\pi(\sqrt{3n})} \sqrt{27} \ ^n T_3,$$

which implies that

$$T_3 > \left(\frac{6.5}{\sqrt{27}}\right)^n \frac{1}{(3n)^{\pi(\sqrt{3n})}}.$$

But $\pi(\sqrt{3n}) \leq \frac{\sqrt{3n}}{2}$. Then

(1.8)
$$T_3 > \left(\frac{6.5}{\sqrt{27}}\right)^n \frac{1}{(3n)^{\sqrt{3n/2}}} > 1,$$

where the second inequality follows by Lemma 1.1(4). Consequently, the product T_3 of primes between 2n and 3n is greater than 1 and therefore the existence of such numbers follows.

Corollary 1.4. For any positive integer $n \ge 2$ there exists a prime number p satisfying

$$n$$

Proof. The result is clear for n = 2. For even n > 2 the result follows by Theorem 1.3. Assume now that n = 2k + 1 for a positive integer $k \ge 1$. Then by Theorem 1.3 there is a prime p satisfying

$$2(k+1)$$

and the result follows.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, 1998. xii+338 pp.
- [2] P. Erdős. Beweis eines satzes von tschebyschef. Acta Litt. Univ. Sci., Szeged, Sect. Math., 5:194–198, 1932.
- [3] P. Erdős and J. Surányi. *Topics in the theory of numbers*. Undergraduate Texts in Mathematics. Springer Verlag, 2003. viii+287 pp.

Received: May 16, 2006