On a Class of Telescopic Numerical Semigroups

Sedat ILHAN

Department of Mathematics, Faculty of Science and Art
Dicle University, Diyarbakır 21280, Turkey
sedati@dicle.edu.tr

Abstract

In this paper, we give some results on the class $S = \langle a, a + 2, 2a + 1 \rangle$ telescopic numerical semigroups where $a > 2$ and a is even integer number.

Mathematics Subject Classification: 20M14, 20F50

Keywords: Numerical semigroups, telescopic, gaps, Apéry set.

1. Introduction

Let $\mathbb{N} = \{0, 1, 2, \cdots n, \cdots\}$ and $S \subseteq \mathbb{N}$. S is called a numerical semigroup if S is sub-semigroup of $(\mathbb{N}, +)$ with $0 \in S$. It is known that every numerical semigroup is finitely generated, i.e. there exist elements of S, say n_0, n_1, \cdots, n_p such that $n_0 < n_1 < \cdots < n_p$ and

$$S = \langle n_0, n_1, \cdots, n_p \rangle = \{ \sum_{i=0}^{p} k_in_i : k_i \in \mathbb{N} \}$$

and

$$G.C.D.(n_0, n_1, \cdots, n_p) = 1 \iff \text{Card}(\mathbb{N}\backslash S) < \infty$$

by [1]. For S numerical semigroup, we define the following:

$$g(S) = max\{x \in \mathbb{Z} : x \notin S\}$$

is called the Frobenius number of S, where \mathbb{Z} is the integer set. Thus, S numerical semigroup is $S = \{0, n_0, n_1, \cdots, g(S) + 1 \rightarrow \cdots\}$ (The arrow "$\rightarrow"$ means that every integer which is greater then $g(S) + 1$ belongs to S).

We say that a numerical semigroup is symmetric if for every $x \in \mathbb{Z}\backslash S$, we have $g(S) - x \in S$. by [2] For $n \in S \backslash \{0\}$, we define the Apéry set of the element n as the set
semigroup, where \(a > 1 \). For \(S \) is symmetric and the corner of \(Ap \) by [3]. Finally, numerical semigroup \(Ap \) is called the corner of telescopic semigroup if \(s \) is even integer number.

It can easily be proved that \(Ap(S, n) \) is formed by the smallest elements of \(S \) belonging to the different congruence classes mod\(n \). Thus, \(\sharp(\text{Ap}(S, n)) = n \) and \(g(S) = \text{max}(\text{Ap}(S, n)) - n \), where \(\sharp(A) \) stands for cardinality(\(A \)) by [2]. The elements of \(\mathbb{N}\backslash S \), denoted by \(H(S) \), are called as gaps of \(S \). A gap \(x \) of a numerical semigroup \(S \) is fundamental if \(\{2x, 3x\} \subseteq S \). We denote by \(FH(S) \) the set of fundamental gaps of \(S \) by [4]. Let \(S = \langle s_1, s_2, \cdots, s_n \rangle \) be a numerical semigroup where \(k \in \{1, 2, \cdots, n - 1\} \) and \(s_k \leq u \). Then, \(u \in \langle s_1, s_2, \cdots, s_{n-1} \rangle \) is called the corner of \(\text{Ap}(S, s_n) \) if \(u \notin \text{Ap}(S, s_n) \) and \((u - s_i) \in \text{Ap}(S, s_n) \) by [3]. Finally, numerical semigroup \(S = \langle s_1, s_2, s_3 \rangle \) is called as triply-generated telescopic semigroup if \(s_3 \in \langle \frac{s_1}{d}, \frac{s_2}{d} \rangle \), where \(d = g.c.d\{s_1, s_2\} \) by [5].

2. Main results

In this section, we give some results for numerical semigroup \(S = \langle a, a + 2, 2a + 1 \rangle \), where \(a > 2 \) and \(a \) is even integer number.

Theorem 1: Let \(S = \langle a, a + 2, 2a + 1 \rangle \). Then, \(S \) is a telescopic numerical semigroup, where \(a > 2 \) and \(a \) is even integer number.

Proof: Since \(a > 2 \) and \(a \) is even integer numbers, \(d = g.c.d\{a, a + 2\} = 2 \). Therefore, because of \(2a + 1 = \frac{4a}{2} + \frac{a}{2} - \frac{a}{2} + 1 = 3\left(\frac{a}{2}\right) + 1\frac{a+2}{2} \), we obtain \((2a + 1) \in \langle \frac{2}{2}, \frac{a+2}{2} \rangle \).

Theorem 2: The Frobenius number of the telescopic numerical semigroup \(S = \langle a, a + 2, 2a + 1 \rangle \) is \(g(S) = \frac{a^2}{2} + a - 1 \) and \(g(S) \) is odd, where \(a > 2 \) and \(a \) is even integer number.

Proof: Putting \(a_1 = a, a_2 = a + 2 \) and \(d = 2 \) from [5, proposition 2.2], we write \(g(S)) = \frac{a^2}{2} + a - 1 \). On the other hand, if we get \(a = 2k, k > 1 \), we obtain that \(g(S) = 2k^2 + 2k - 1 \) and \(g(S) \) is odd.

Theorem 3: Let \(S = \langle a, a + 2, 2a + 1 \rangle \). Telescopic numerical semigroup \(S \) is symmetric and the corner of \(\text{Ap}(S, 2a + 1) \) is \(4a + 2 \), where \(a > 2 \) and \(a \) is even integer number.

Proof: It is clear that telescopic numerical semigroup \(S \) is symmetric from [5]. For \(S = \langle a, a + 2, 2a + 1 \rangle \), and \(u \in \langle a, a + 2 \rangle \), we will show that the number which satisfies the following conditions is \(u = 4a + 2 \):

(i) \(u \notin \text{Ap}(S, 2a + 1) \) since \((4a + 2) - (2a + 1) = (2a + 1) \in S \) and \((2a + 1) - (2a + 1) = 0 \in S \).

(ii) \((u - a) \in \text{Ap}(S, 2a + 1) \) since \((4a + 2) - (a) = (3a + 2) \in S \) and \((3a + 2) - (2a + 1) = (a + 1) \notin S \).
(iii) \((u - (a + 2)) \in Ap(S, 2a + 1)\) since \((4a + 2) - (a + 2) = (3a) \in S\) and
\((3a) - (2a + 1) = (a - 1) \notin S\).

Example: Let \(a = 4\). In this case, we write \(S = \langle 4, 6, 9 \rangle = \{0, 4, 6, 8, 9, 10, 12, \ldots \}\). \(S\) is telescopic numerical semigroup since \(d = g.c.d\{4, 6\} = 2\) and
\(9 \in \langle \frac{4}{2}, \frac{6}{2} \rangle = \langle 2, 3 \rangle\). On the other hand, we obtain \(g(S)) = \frac{a^2}{2} + a - 1 = 11\), and
the corner of \(Ap(S, 9) = \{s \in S : (s - 9) \notin S\} = \{0, 4, 6, 8, 10, 12, 16, 20\}\) is 18.
Finally, we find that \(H(S) = \{1, 2, 3, 5, 7, 11\}\) and \(FH(S) = \{2, 3, 5, 7, 11\}\).

References

Received: October 3, 2005