FEKETE-SZEGÖ PROBLEM
FOR CERTAIN SUBCLASS
OF QUASI-CONVEX FUNCTIONS

Aini Janteng and Suzeini Abdul Halim

Institute of Mathematical Sciences, Universiti Malaya
50603 Kuala Lumpur, Malaysia
aini_jg@ums.edu.my, suzeini@um.edu.my

Maslina Darus

School of Mathematical Sciences
Faculty of Sciences and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
maslina@pkrisc.cc.ukm.my

Abstract

For $0 \leq \alpha < 1$, let Q_α be the class of functions f which are normalised analytic and univalent in $D = \{ z : |z| < 1 \}$ satisfying the condition

$$
\text{Re} \left\{ \frac{\alpha(z^2f''(z))'}{g'(z)} + \frac{(zf'(z))'}{g'(z)} \right\} > 0,
$$

where g is a normalised convex function. For $f \in Q_\alpha$, sharp bounds are obtained for the Feketo-Szegö functional $|a_3 - \mu a_2^2|$ when μ is real.

Mathematics Subject Classification: Primary 30C45
Keywords: Quasi-convex functions, Fekete-Szegö functional

1. Introduction

Let S denote the class of normalised analytic univalent functions f of the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$

(1)
where \(z \in D = \{ z : |z| < 1 \} \). We also denote by \(S^*, C \) and \(K \) the subclasses of \(S \) consisting of functions which are, respectively, starlike, convex and close-to-convex in \(D \).

A classical result of Feketo and Szegö [2] determines the maximum value of \(|a_3 - \mu a_2^2| \), as a function of the real parameter \(\mu \), for functions belonging to \(S \). There are now several results of this type in the literature, each of them dealing with \(|a_3 - \mu a_2^2| \) for various classes of functions (see, e.g., [1,4]).

Denote by \(Q(\beta) \) the class of strongly quasi-convex functions of order \(\beta (\beta \geq 0) \). Thus \(f \in Q(\beta) \) if and only if there exists \(g \in C \) such that for \(z \in D \),

\[
\left| \arg \left\{ \frac{(zf'(z))^'}{g'(z)} \right\} \right| \leq \frac{\pi \beta}{2}.
\]

In particular, \(Q = Q(1) \) is the class of quasi-convex functions introduced by Noor [7]. We also note that every quasi-convex function is close-to-convex and hence univalent in \(D \). For functions belonging to the class \(Q(\beta) \), sharp upper bounds for the functional \(|a_3 - \mu a_2^2| \) have been obtained by Nak Eun Cho [6].

In this paper, we give an estimate for the same functional for the class \(Q_\alpha \) defined as follows:

Definition 1 Let \(f \) be given by (1) and \(0 \leq \alpha < 1 \). Then \(f \in Q_\alpha \) if and only if there exist \(g \in C \) such that for \(z \in D \),

\[
Re \left\{ \frac{\alpha(z^2 f''(z))'}{g'(z)} + \frac{(zf'(z))^'}{g'(z)} \right\} > 0. \tag{2}
\]

Here, \(C \) denotes the class of convex functions; that is \(g \in C \) if and only if \(g \) is analytic in \(D \) and

\[
Re \left\{ 1 + \frac{zg''(z)}{g'(z)} \right\} > 0 \tag{3}
\]

for \(z \in D \).

We note that by using a lemma due to Miller and Mocanu [5], it can easily be shown that \(Q_\alpha \subset Q \) for \(0 \leq \alpha < 1 \) and hence \(f \in Q_\alpha \) means \(f \) is univalent.

We first state some preliminary lemmas, required for proving our result.

2. Preliminary Results

Lemma 1 ([8]) Let \(h \) be analytic in \(D \) with \(Re \, h(z) > 0 \) and be given by \(h(z) = 1 + c_1 z + c_2 z^2 + ... \) for \(z \in D \), then
\[\left| c_2 - \frac{c_1^2}{2} \right| \leq 2 - \frac{|c_1|^2}{2}. \]

Lemma 2 ([3]) Let \(g \in \mathbb{C} \) with \(g(z) = z + b_2 z^2 + b_3 z^3 + ... \) Then, for \(\mu \) real

\[|b_3 - \mu b_2^2| \leq \max \left\{ \frac{1}{3}, |\mu - 1| \right\}. \]

Lemma 3 Let \(f \in \mathcal{Q}_\alpha \) and be given by (1) then

\[(\alpha + 1)|a_2| \leq 1 \]

and

\[(2\alpha + 1)|a_3| \leq 1. \]

Proof.

Since \(g \in \mathbb{C} \), it follows from (3) that

\[g'(z) + zg''(z) = g'(z)p(z) \quad (4) \]

for \(z \in \mathcal{D} \), with \(Re \ p(z) > 0 \) given by \(p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + ... \) Equating coefficients, we obtain

\[2b_2 = p_1 \quad (5) \]

and

\[6b_3 = p_2 + 2b_2 p_1. \quad (6) \]

It also follows from (2) that

\[\alpha (z^2 f''(z))' + (z f'(z))' = g'(z)h(z) \quad (7) \]

where \(Re \ h(z) > 0 \). Writing \(h(z) = 1 + c_1 z + c_2 z^2 + ... \) and equating coefficients in (7) gives

\[4(\alpha + 1)a_2 = c_1 + 2b_2 \quad (8) \]

and

\[9(2\alpha + 1)a_3 = c_2 + 2b_2 c_1 + 3b_3. \quad (9) \]

The result now follows on using classical inequalities \(|p_1| \leq 2, |p_2| \leq 2, |c_1| \leq 2, |c_2| \leq 2 \) and the inequalities \(|b_2| \leq 1 \) and \(|b_3| \leq 1 \) which follow from (5) and (6).
3. Main Result

Theorem. Let \(f \) be given by (1) and belongs to the class \(Q_\alpha \). Then, for \(0 \leq \alpha < 1 \),

\[
9(2\alpha + 1)(\alpha + 1)^2|a_3 - \mu a_2^2|
\]

\[
\leq \begin{cases}
9(\alpha + 1)^2 - 9(2\alpha + 1)\mu , & \text{if } \mu \leq \frac{4(\alpha+1)^2}{9(2\alpha+1)}, \\
5(\alpha + 1)^2 - \frac{9(2\alpha+1)\mu}{(8(\alpha+1)^2-9(2\alpha+1)\mu)^2} + \frac{4}{36(2\alpha+1)\mu} , & \text{if } \frac{4(\alpha+1)^2}{9(2\alpha+1)} \leq \mu \leq \frac{8(\alpha+1)^2}{9(2\alpha+1)}, \\
3(\alpha + 1)^2 , & \text{if } \frac{8(\alpha+1)^2}{9(2\alpha+1)} \leq \mu \leq \frac{4(\alpha+1)^2}{3(2\alpha+1)}, \\
-9(\alpha + 1)^2 + 9(2\alpha + 1)\mu , & \text{if } \mu \geq \frac{4(\alpha+1)^2}{3(2\alpha+1)}.
\end{cases}
\]

Inequalities are sharp for all cases.

Proof.

From (5),(7),(8) and (9), it is easily established that

\[
9(2\alpha + 1)(a_3 - \mu a_2^2)
\]

\[
= 3 \left\{ b_3 - \frac{3(2\alpha + 1)\mu b_2^2}{4(\alpha + 1)^2} \right\} + \left\{ c_2 + \left(\frac{8(\alpha + 1)^2 - 9(2\alpha + 1)\mu}{16(\alpha + 1)^2} - \frac{1}{2} \right) c_1^2 \right\} + \left\{ 1 - \frac{9(2\alpha + 1)\mu}{8(\alpha + 1)^2} \right\} p_1 c_1.
\]

(10)

First, consider the case \(\frac{4(\alpha+1)^2}{9(2\alpha+1)} \leq \mu \leq \frac{8(\alpha+1)^2}{9(2\alpha+1)} \).

Equation (10) gives

\[
9(2\alpha + 1)|a_3 - \mu a_2^2| \leq 3 \left| b_3 - \frac{3(2\alpha + 1)\mu b_2^2}{4(\alpha + 1)^2} \right| + \left| c_2 - \frac{1}{2} c_1^2 \right| + \frac{1}{16(\alpha+1)^2}|8(\alpha + 1)^2 - 9(2\alpha + 1)\mu||c_1||
\]

\[
+ \frac{1}{8(\alpha+1)^2}|8(\alpha + 1)^2 - 9(2\alpha + 1)\mu||c_1||p_1|
\]

\[
\leq \left(3 - \frac{9(2\alpha + 1)\mu}{4(\alpha + 1)^2} \right) \left(2 - \frac{1}{2}|c_1|^2 \right) + \frac{1}{16(\alpha+1)^2}|8(\alpha + 1)^2 - 9(2\alpha + 1)\mu||c_1|
\]

\[
+ \frac{1}{4(\alpha+1)^2}|8(\alpha + 1)^2 - 9(2\alpha + 1)\mu||c_1|
\]
where we have used Lemma 1 and Lemma 2 and the inequality $|p_1| \leq 2$. Elementary calculation indicates that the function φ attains its maximum value at $x_o = \frac{2(8(\alpha+1)^2 - 9(2\alpha+1)\mu)}{9(2\alpha+1)\mu}$ and thus establishing

$$9(2\alpha + 1)(\alpha + 1)^2|a_3 - \mu a_2^2| \leq \varphi(x_o)$$

Next, since $|x_o| \leq 2$, thus we have $\mu \geq \frac{4(\alpha+1)^2}{9(2\alpha+1)}$ and hence completing the proof for the case $\frac{4(\alpha+1)^2}{9(2\alpha+1)} \leq \mu \leq \frac{8(\alpha+1)^2}{9(2\alpha+1)}$.

Letting $c_1 = \frac{2(8(\alpha+1)^2 - 9(2\alpha+1)\mu)}{9(2\alpha+1)\mu}$, $c_2 = p_1 = p_2 = 2$ and $b_2 = b_3 = 1$ in (10) shows that the result is sharp.

Secondly, we consider the case $\mu \leq \frac{4(\alpha+1)^2}{9(2\alpha+1)}$.

Write

$$a_3 - \mu a_2^2 = a_3 - \frac{4(\alpha+1)^2}{9(2\alpha+1)}a_2^2 + \left(\frac{4(\alpha+1)^2}{9(2\alpha+1)} - \mu\right)a_2^2.$$

Since $|a_2| \leq \frac{1}{\alpha+1}$, it follows that

$$9(2\alpha + 1)(\alpha + 1)^2|a_3 - \mu a_2^2| \leq 9(2\alpha + 1)(\alpha + 1)^2\left|a_3 - \frac{4(\alpha+1)^2}{9(2\alpha+1)}a_2^2\right|$$

$$+ 9(2\alpha + 1)(\alpha + 1)^2\left(\frac{4(\alpha+1)^2}{9(2\alpha+1)} - \mu\right)\left(\frac{1}{\alpha+1}\right)^2 \leq 9(\alpha + 1)^2 - 9(2\alpha + 1)\mu.$$

Here, we use the result already proven for $\mu = \frac{4(\alpha+1)^2}{9(2\alpha+1)}$. Equality is attained on choosing $c_1 = c_2 = p_1 = p_2 = 2$ and $b_2 = b_3 = 1$ in (10).

Next, assume that $\frac{8(\alpha+1)^2}{9(2\alpha+1)} \leq \mu \leq \frac{4(\alpha+1)^2}{3(2\alpha+1)}$.

First, we deal with the case $\mu = \frac{4(\alpha+1)^2}{3(2\alpha+1)}$. It follows from (4),(5),(6) and (10) that

$$9(2\alpha + 1)(\alpha + 1)^2\left|a_3 - \frac{4(\alpha+1)^2}{3(2\alpha+1)}a_2^2\right| \leq 3(\alpha + 1)^2 - \frac{(\alpha+1)^2}{4}(|c_1| - |p_1|)^2,$$

$$= \psi(|c_1|, |p_1|), \text{ say.}$$
A straightforward calculation shows that the ψ attains maximum value when $|c_1| = |p_1|$ and so

\[9(2\alpha + 1)(\alpha + 1)^2|a_3 - \mu a_2^2| \leq 3(\alpha + 1)^2. \]

Next, write

\[
a_3 - \mu a_2^2 = \frac{9(2\alpha + 1)\mu - 8(\alpha + 1)^2}{4(\alpha + 1)^2} \left(a_3 - \frac{4(\alpha + 1)^2}{3(2\alpha + 1)} a_2^2 \right) + \frac{3(4(\alpha + 1)^2 - 3(2\alpha + 1)\mu)}{4(\alpha + 1)^2} \left(a_3 - \frac{8(\alpha + 1)^2}{9(2\alpha + 1)} a_2^2 \right),
\]

and the result follows at once by using results already established for $\mu = \frac{8(\alpha + 1)^2}{9(2\alpha + 1)}$ and $\mu = \frac{4(\alpha + 1)^2}{3(2\alpha + 1)}$ above. The result is sharp for $p_2 = c_2 = 2, p_1 = c_1 = 0, b_2 = 0$ and $b_3 = \frac{1}{3}$ in (10).

Finally, consider $\mu \geq \frac{4(\alpha + 1)^2}{3(2\alpha + 1)}$.

Write

\[
a_3 - \mu a_2^2 = a_3 - \frac{4(\alpha + 1)^2}{3(2\alpha + 1)}a_2^2 + \left(\frac{4(\alpha + 1)^2}{3(2\alpha + 1)} - \mu \right) a_2^2
\]

and thus

\[
9(2\alpha + 1)(\alpha + 1)^2|a_3 - \mu a_2^2| \leq 9(2\alpha + 1)(\alpha + 1)^2 \left| a_3 - \frac{4(\alpha + 1)^2}{3(2\alpha + 1)} a_2^2 \right| + 9(2\alpha + 1)(\alpha + 1)^2 \left(\mu - \frac{4(\alpha + 1)^2}{3(2\alpha + 1)} \right) |a_2|^2,
\]

\[
\leq -9(\alpha + 1)^2 + 9(2\alpha + 1)\mu,
\]

where results for $\mu = \frac{4(\alpha + 1)^2}{3(2\alpha + 1)}$ and the inequality $|a_2| \leq \frac{1}{\alpha + 1}$ have been used.

By choosing $c_1 = p_1 = 2i, c_2 = p_2 = -2, b_2 = i$ and $b_3 = -1$ in (10), equality is obtained.

ACKNOWLEDGEMENTS. The work presented here was supported by IRPA grant 09-02-02-10029EAR, Malaysia.

References

Received: September 11, 2005