Rational curves in Grassmannians
and their Plücker embeddings

E. Ballico

Dept. of Mathematics, University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Fix integers \(k > n \geq 2 \) and \(a_1 \geq \cdots \geq a_n \) such that \(a_n \geq \lfloor \left(\binom{k}{n} - 1 \right) / n \rfloor \) and \(a_1 + \cdots + a_n + 1 \geq \binom{k}{n} \). Set \(E := \bigoplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^1}(a_i) \). Let \(V \) be a general \(k \)-dimensional linear subspace of \(H^0(\mathbb{P}^1, E) \). Here we prove that for all \(n \)-dimensional linear subspace \(W \) of \(V \) the evaluation map \(W \otimes \mathcal{O}_{\mathbb{P}^1} \to E \) is an injection of sheaves. Equivalently, the natural map \(\bigwedge^k(V) \to H^0(\mathbb{P}^1, \det(E)) \) is injective.

Mathematics Subject Classification: 14H60; 14M15

Keywords: vector bundle on \(\mathbb{P}^1 \); Grassmannian; spanned vector bundle; Plücker embedding

1. Introduction

Theorem 1. Fix integers \(k > n \geq 2 \) and \(a_1 \geq \cdots \geq a_n \) such that \(a_n \geq \lfloor \left(\binom{k}{n} - 1 \right) / n \rfloor \) and \(a_1 + \cdots + a_n + 1 \geq \binom{k}{n} \). Set \(E := \bigoplus_{i=1}^{n} \mathcal{O}_{\mathbb{P}^1}(a_i) \). Let \(V \) be a general \(k \)-dimensional linear subspace of \(H^0(\mathbb{P}^1, E) \). Then for all \(n \)-dimensional linear subspace \(W \) of \(V \) the evaluation map \(W \otimes \mathcal{O}_{\mathbb{P}^1} \to E \) is an injection of sheaves. Equivalently, the natural map \(\bigwedge^k(V) \to H^0(\mathbb{P}^1, \det(E)) \) is injective.

Remark 1. The equivalence of the two statements appearing in Theorem 1 was pointed out by M. Teixidor i Bigas in [2]. Take \(E, V \) as in the statement of Theorem 1. Since \(E \) is spanned, \(k > n \), and \(V \) is general, \(V \) spans \(E \). Hence the pair \((E, V) \) induces a morphism \(h_{E,V} : \mathbb{P}^1 \to G(n, k) \), where \(G(n, k) \) denote the Grassmannian of all \((k - n) \)-dimensional linear subspaces of the vector space \(\mathbb{K}^n \). Let \(u_{n,k} : G(n, k) \to \mathbb{P}^{N(n,k)}, N(n, k) := \binom{n}{k} - 1, \) be the Plücker embedding. In [2] M. Teixidor i Bigas also proved that Theorem 1 is equivalent

\[\text{The author was partially supported by MIUR and GNSAGA of INdAM (Italy).} \]
to show that \(u_{n,k} \circ h_{E,V}(\mathbb{P}^1) \) spans \(\mathbb{P}^{N(n,k)} \). We will prove Theorem 1 proving the non-degeneracy of the curve \(u_{n,k} \circ h_{E,V}(\mathbb{P}^1) \) inside \(\mathbb{P}^{N(n,k)} \).

For a smooth curve of genus \(g \geq 2 \) a result similar to Theorem 1 was proved in [1] when \(E \) is a general degree \(n \) stable vector bundle with sufficiently high degree. We stress that in Theorem 1 we do not require that \(E \) is rigid, i.e. we do not require the inequality \(a_1 \leq a_n - 1 \).

We work over an algebraically closed field \(\mathbb{K} \).

2. Proof of Theorem 1

For all integers \(b > a > 0 \) let \(G(a,b) \) denote the Grassmannian of all \((b-a)\)-dimensional linear subspaces of \(\mathbb{K}^b \). Thus \(\dim(G(a,b)) = a(b-a) \) and there is a tautological exact sequence of vector bundles on \(G(a,b) \)

\[
0 \to S_{G(a,b)} \to O_{G(a,b)}^{\oplus b} \to Q_{G(a,b)} \to 0
\]

with \(\text{rank}(Q_{G(a,b)}) = b \), \(\text{rank}(S_{G(a,b)}) = b-a \) and \(\det(Q_{G(a,b)}) \cong \det(S_{G(a,b)})^* \cong O_{G(a,b)}(1) \), where \(O_{G(a,b)}(1) \) denotes the positive generator of \(\text{Pic}(G(a,b) \cong \mathbb{Z} \). \(O_{G(a,b)}(1) \) is very ample and the associated complete linear system \(|O_{G(a,b)}(1)| \) induces the Plücker embedding \(u_{a,b} \) of \(G(a,b) \) into \(\mathbb{P}^{N(a,b)} \), \(N(a,b) := \binom{b}{a} - 1 \). We have \(TG(a,b) \cong Q_{G(a,b)} \otimes S_{G(a,b)}^* \). For all subscheme \(Z \) of \(G(a,b) \) let \(N_{Z,G(a,b)} \) denote its normal sheaf in \(G(a,b) \). Notice that \(N_{Z,G(a,b)} \) is a spanned vector bundle if \(Z \) is smooth. We will often see \(G(a,b) \) as the set of all \(\mathbb{P}^{a-1} \)'s contained in \(\mathbb{P}^{b-1} \). \(G(a,b) \) is a homogenous variety which contains many lines with respect to the Plücker embedding. Any such line is obtained in this way.

Fix an \(a \)-dimensional linear subspace \(B \) of \(\mathbb{P}^{b-1} \) and a codimension two linear subspace \(A \) of \(B \) (with the convention \(A = \emptyset \) if \(a = 1 \)). Set \(D(A,B) := \{ D \in G(a,b) : A \subset D \subset B \} \). \(D(A,B) \) is a line of \(G(a,b) \) and the group \(\text{Aut}(G(a,b)) \) acts transitively on the set \(\Gamma(a,b) \) of all lines contained in \(G(a,b) \). Take \(D \in \Gamma \).

The vector bundle \(Q_{S(a,b)}|D \) is a direct sum of one line bundle of degree 1 and \(a-1 \) line bundles of degree 0. The vector bundle \(S_{S(a,b)}|D \) is a direct sum of one line bundle of degree \(-1 \) and \(b-a-1 \) line bundles of degree 0. Thus \(TG(a,b)|D \) is a direct sum of one line bundle of degree 2, \((a+b-2) \) line bundles of degree 1 and \((a-1)(b-a-1) \) line bundles of degree 0. Thus \(N_{D,G(a,b)} \) is a direct sum of \((a+b-2) \) line bundles of degree 1 and \((a-1)(b-a-1) \) line bundles of degree 0.

The following lemma is well-known (see e.g. [1], §2).

Lemma 1. Let \(T \subset G(a,b) \) a reduced, connected and nodal curve such that \(p_a(T) = 0 \) and each irreducible component of \(T \) is a line. Then \(T \) is a smooth point of the Hilbert scheme \(\text{Hilb}(G(a,b)) \) of \(G(a,b) \). Furthermore, \(T \) is smoothable, i.e. it is the flat limit of a family of smooth and connected rational curves contained in \(G(a,b) \).

Remark 2. Fix integers \(b > a > 0 \) and \(d > 0 \). Let \(R(a,b,d) \) denote the set of all smooth and connected degree \(d \) rational curves contained in \(G(a,b) \). For
any \(Z \in R(a, b, d) \) the vector bundle \(N_{Z,G(a,b)} \) is a spanned vector bundle on \(Z \cong \mathbb{P}^1 \). Thus \(h^1(Z, N_{Z,G(a,b)}) = 0 \). Thus \(Z \) is a smooth point of the Hilbert scheme \(\text{Hilb}(G(a,b)) \). Furthermore, the vector bundles \(Q_{G(a,b)}|Z \) and \(S_{G(a,b)}|Z \) are rigid for any general element \(Z \) of any irreducible component of \(R(a, b, d) \) (use the universal properties of the Grassmannians \(G(a,b) \) and \(G(b-a, a) \) and that every vector bundle on \(\mathbb{P}^1 \) is a flat limit of a family of rigid vector bundles).

Lemma 2. Fix general \(P,Q \) in \(G(a,b) \). There is a chain of \(b-a \) lines joining \(Q \) with \(P \), i.e. \(b-a \) lines \(D_1, \ldots, D_{b-a} \) such that \(P \in D_1, Q \in D_{b-a}, D_i \cap D_{i+1} \neq \emptyset \) for all \(i \in \{1, \ldots, b-a-1\} \), \(T := D_1 \cup \cdots \cup D_{b-a} \) is connected and nodal and \(p_a(T) = 0 \).

Proof. Since \(G(a,a+1) \cong \mathbb{P}^a \), the case \(b = a+1 \) is trivial. Use induction on \(b \) and the description of all lines contained in \(G(a,b) \).

Lemma 3. Fix integers \(b > a > 0 \). Then there exists a reduced, connected and nodal curve such that \(\deg(T) = \binom{b}{a} - 1, p_a(T) = 0 \), each irreducible component of \(T \) is a line and \(u_{a,b}(T) \) spans \(\mathbb{P}^{N(a,b)} \).

Proof. Since \(G(a,a+1) \cong \mathbb{P}^a \), the case \(b = a+1 \) is trivial. Use induction on \(b \) and Lemma 2.

Proof of Theorem 1. Set \(x := \lfloor (\binom{k}{n} - 1)/n \rfloor \) and \(y := (\binom{k}{n}) - 1 - nx \). Let \(F \) be the rank \(n \) vector bundle on \(\mathbb{P}^1 \) isomorphic to the direct sum of \(y \) line bundles of degree \(x+1 \) and \(n-y \) line bundles of degree \(x \), i.e. the rigid line bundle with rank \(n \) and degree \(\binom{k}{n} \). Notice that \(h^0(\mathbb{P}^1, F) = \binom{k}{n} + n - 1 \geq k \).

Our assumptions on \(a_n \) and \(a_1 + \cdots + a_n \) imply the existence of an inclusion of sheaves \(j : F \rightarrow E \). The map \(j \) induces an inclusion \(j_* : H^0(\mathbb{P}^1, F) \rightarrow H^0(\mathbb{P}^1, E) \). By semicontinuity it is sufficient to prove the result for one \(k \)-dimensional linear subspace, e.g. one of the form \(j_*(M) \) with \(M \) a general \(k \)-dimensional linear subspace of \(H^0(\mathbb{P}^1, F) \). Apply Lemmas 1 and 3, Remark 2 and the interpretation of Theorem 1 given in the last part of Remark 1.

References

Received: November 26, 2005