On the Number of Minimal Dominating Sets in Some Classes of Trees

Dorota Bród

Faculty of Mathematics and Applied Physics
Rzeszów University of Technology
ul. W. Pola 2, 35-959 Rzeszów, Poland
dorotab@prz.edu.pl

Abstract
A subset \(Q \subseteq V(G) \) is a dominating set of a graph \(G \) if each vertex in \(V(G) \) is either in \(Q \) or is adjacent to a vertex in \(Q \). A dominating set \(Q \) of \(G \) is minimal if \(Q \) contains no dominating set of \(G \) as a proper subset. In this paper we study the number of minimal dominating sets in some classes of trees.

Mathematics Subject Classification: 05C69

Keywords: dominating sets; minimal dominating sets; counting

1 Introduction

In general we use the standard terminology and notation of graph theory, see [2]. Let \(G \) be a simple, undirected graph. \(P_n \) denotes a path on \(n \) vertices, \(n \geq 0 \). Let \(X \subset V(G) \cup E(G) \). The notation \(G \setminus X \) means the graph obtained from \(G \) by deleting the set \(X \). A subset \(Q \subseteq V(G) \) is a dominating set of \(G \) if any vertex \(x \in V(G) \setminus Q \) is adjacent to at least one vertex \(y \in Q \). A minimal dominating set \(Q \) of \(G \) is a dominating set that contains no dominating set of \(G \) as a proper subset. Throughout this paper for convenience we will write a md-set of \(G \) instead of a minimal dominating set of \(G \). By \(\text{NMD}(G) \) we will denote the total number of md-sets in \(G \).

The concept of domination in graphs has existed in the literature for a long time, see [1, 3, 4]. In this paper we study the number of all md-sets in trees. We count md-sets in special classes of trees.

Let \(x \in V(G) \). We denote the family of all md-sets \(Q \) of \(G \) such that \(x \in Q \) (respectively \(x \not\in Q \)) by \(Q_x \) (respectively \(Q_{\neg x} \)). Then the basic rule for
counting md-sets in a graph G is as follows

$$\text{NMD}(G) = |Q_x| + |Q_{\sim x}|.$$

In what follows T stands for a tree with vertex set $V(T)$. Recall that a vertex of degree 1 is called a leaf. For $x \in V(T)$ the set of all leaves attached to the vertex x is denoted by $L(x)$. From the definition of md-set immediately follows:

Proposition 1 Let T be a tree with $x \in V(T)$. Assume that $L(x) = \{z_1, \ldots, z_k\}$, $k \geq 2$, is the set of leaves attached to the vertex x and $L'(x)$ is an arbitrary proper subset of $L(x)$. Then $\text{NMD}(T) = \text{NMD}(T \setminus L'(x))$. \qed

2 Main results

It is clear that if $|V(T)| = 1$ then $\text{NMD}(T) = 1$. If $|V(T)| = 2$ then $\text{NMD}(T) = 2$. We consider n-vertex trees with $n \geq 3$.

Theorem 2 Let T be an n-vertex tree with $n \geq 3$. Then $\text{NMD}(T) = 2$ with equality if and only if $T = K_{1,n-1}$.

Proof. It is clear that $\text{NMD}(K_{1,n-1}) = 2$. Assume that T is an n-vertex tree with $n \geq 3$ and $\text{NMD}(T) = 2$. We shall show that $T = K_{1,n-1}$. If $n = 3$ then $T = K_{1,2}$. Assume that $n \geq 4$ and $T \neq K_{1,n-1}$. This means that there exists a path of length at least 3 in T. Let $uxyz$ be a path in T with u being a leaf. Of course, $\text{NMD}(T) = |Q_u| + |Q_{\sim u}|$. Let $Q \in Q_u$ be a md-set of T. Since $u \in Q$, we see that $x \notin Q$. Because y is not a leaf, we have possibilities that $y \in Q$ or $y \notin Q$. Hence there are at least two different md-sets in T containing u, so $|Q_u| \geq 2$. Assume now that $Q' \in Q_{\sim u}$ is a md-set of T. Of course $x \notin Q'$. Analogously as above, $y \in Q'$ or $y \notin Q'$, so $|Q_{\sim u}| \geq 2$. Consequently, we obtain that $\text{NMD}(T) = |Q_u| + |Q_{\sim u}| \geq 4$. This contradicts our assumption. \qed

Theorem 3 For an arbitrary $n \geq 3$ there is no an n-vertex tree T with $\text{NMD}(T) = 3$.

Proof. If $n = 3$ then the theorem is clear. Assume that $n \geq 4$ and there is an n-vertex tree T with $\text{NMD}(T) = 3$. Theorem 2 shows that $T \neq K_{1,n-1}$. Hence there is a path in T of length at least 3. As in Theorem 2 we obtain that $\text{NMD}(T) \geq 4$, a contradiction. \qed

Let K_{1,p_i} be a star with $p_i \geq 2$ for $i = 1, \ldots, n$. We define a class of graphs denoted by S_{p_1, \ldots, p_m}^n, $p_i \geq 2$, $i = 1, \ldots, m$, with n vertices, $n = \sum_{i=1}^m p_i + m$, obtained recursively from the graph $S_{p_1, \ldots, p_{m-1}}^{m-1}$ by joining the center of (p_m+1)-vertex star to a non-leaf of $S_{p_1, \ldots, p_{m-1}}^{m-1}$. Moreover $S_{p_1}^1 = K_{1,p_1}$.
Theorem 4 Let \(n \geq 3, \ p_i \geq 2 \) for \(i = 1, \ldots, m \) be integers. Then

\[
\text{NMD}(S_{p_1, \ldots, p_m}^m) = 2 \text{NMD}(S_{p_1, \ldots, p_m}^{m-1})
\]

with the initial condition \(\text{NMD}(S^1_{p_1}) = 2 \).

Proof. The initial condition follows from the Theorem 2. Let \(m \geq 2 \). Assume that \(x_k \) is not a leaf in \(S_{p_1, \ldots, p_m}^m \) and \(L(x_k) = y_1, \ldots, y_t, t \geq 2 \). By general rule of counting we have \(\text{NMD}(S_{p_1, \ldots, p_m}^m) = |Q_{x_k}| + |Q_{-x_k}| \). Let \(Q \in Q_{x_k} \). Then \(x_k \in Q \) and \(y_i \notin Q \) for every \(i = 1, \ldots, t \). Hence \(Q = \{x_k\} \cup Q' \) where \(Q' \) is an arbitrary md-set of the graph \(S_{p_1, \ldots, p_m}^m \setminus \{x_k, y_1, \ldots, y_t\} \) isomorphic to \(S_{p_1, \ldots, p_m}^{m-1} \). This implies that \(|Q_{x_k}| = \text{NMD}(S_{p_1, \ldots, p_m}^{m-1}) \). Let now \(Q \in Q_{-x_k} \). Then \(x_k \notin Q \) and \(y_i \in Q \) for \(i = 1, \ldots, t \). Hence \(Q = \{y_i; i = 1, \ldots, t\} \cup Q' \) where \(Q' \) is defined as above. Consequently \(|Q_{-x_k}| = \text{NMD}(S_{p_1, \ldots, p_m}^{m-1}) \). Finally, \(\text{NMD}(S_{p_1, \ldots, p_m}^m) = 2 \text{NMD}(S_{p_1, \ldots, p_m}^{m-1}) \) which ends the proof.

Corollary 5 Let \(n \geq 3, \ p_i \geq 2 \) for \(i = 1, \ldots, m \) be integers. Then

\(\text{NMD}(S_{p_1, \ldots, p_m}^m) = 2^m \). Moreover, \(\text{NMD}(S_{p_1, \ldots, p_m}^m) \) has the maximum value if \(p_i = 2 \) for every \(i = 1, \ldots, m \).

Theorem 6 Let \(T \) be an \(n \)-vertex tree, \(n \geq 3 \). Then for an arbitrary \(m > n \) there is an \(m \)-vertex tree \(T^* \) such that \(\text{NMD}(T^*) = \text{NMD}(T) \).

Proof. Let \(x \in V(T) \) and \(L(x) \neq \emptyset \). We locally augment the tree \(T \) by adding to the vertex \(x \) the star \(K_{1,p} \), \(p = m - n \), so that the vertex \(x \) is identified with the center \(y \) of the star \(K_{1,p} \). Then we obtain the tree \(T^* \) with \(|V(T^*)| = m \) and \(\text{NMD}(T^*) = \text{NMD}(T) \), which ends the proof.

Proposition 7 Let \(n \geq 1 \) be an integer. Then for \(n \geq 6 \)

\[
\text{NMD}(P_n) = \text{NMD}(P_{n-2}) + \text{NMD}(P_{n-3}) + \text{NMD}(P_{n-4}) - \text{NMD}(P_{n-6})
\]

with initial conditions \(\text{NMD}(P_0) = \text{NMD}(P_1) = 1, \text{NMD}(P_2) = \text{NMD}(P_3) = 2, \text{NMD}(P_4) = \text{NMD}(P_5) = 4 \).

Proof. Assume that vertices of \(P_n \) are numbered in the natural fashion. The initial conditions are obvious. Assume that \(n \geq 7 \). It is clear that \(\text{NMD}(P_n) = |Q_{x_n}| + |Q_{-x_n}| \). Assume that \(Q \) is an arbitrary md-set of \(T \). If \(Q \in Q_{x_n} \) then \(x_n \in Q \). It is easily seen that \(x_{n-1} \notin Q \). This implies that \(Q = Q' \cup \{x_n\} \) where \(Q' \) is an arbitrary md-set of the graph \(P_n \setminus \{x_n, x_{n-1}\} \), which is isomorphic to \(P_{n-2} \). Hence \(|Q_{x_n}| = \text{NMD}(P_{n-2}) \). Let now \(Q \in Q_{-x_n} \). This means that \(x_n \notin Q \) and \(x_{n-1} \in Q \). Let \(f(n), n \geq 4, \) be the total number of md-sets of \(P_n \) containing vertices \(x_{n-1}, x_{n-2} \). Consider the following cases.
(1) \(x_{n-2} \notin Q \).
Let \(Q' \subseteq Q_{-n} \) be a subfamily of md-sets such that \(x_{n-2} \notin Q \) for all \(Q \in Q' \). Then \(Q = Q'' \cup \{x_{n-1}\} \), where \(Q'' \) is an arbitrary md-set of the graph \(P_n \setminus \{x_n, x_{n-1}, x_{n-2}\} \) which is isomorphic to \(P_{n-3} \). Hence, \(|Q'| = NMD(P_{n-3}) \).

(2) \(x_{n-2} \in Q \).
Let \(Q'' \subseteq Q_{-x_n} \) be a subfamily of md-sets such that \(x_{n-2} \notin Q \) for all \(Q \in Q'' \). Then \(x_{n-3}, x_{n-4} \notin Q \), and by definition, \(|Q''| = f(n) \). Consider the following subcases.

(2.1) \(x_{n-5} \in Q \) and \(x_{n-6} \notin Q \).
Then it is clear that \(Q = Q_1 \cup \{x_{n-5}, x_{n-2}, x_{n-1}\} \), where \(Q_1 \) is an arbitrary md-set of the graph \(P_n \setminus \{x_{n-i}; i = 0, \ldots, 6\} \), which is isomorphic to \(P_{n-7} \). Hence we have \(NMD(P_{n-7}) \) sets \(Q \) in this case.

(2.2) \(x_{n-5} \in Q \) and \(x_{n-6} \in Q \).
In this case \(Q = Q_2 \cup \{x_{n-1}, x_{n-2}\} \), where \(Q_2 \) is an arbitrary md-set of the graph \(P_n \setminus \{x_{n-j}; j = 0, \ldots, 3\} \), which is isomorphic to \(P_{n-4} \), and \(Q_2 \) contains vertices \(x_{n-5}, x_{n-6} \). Therefore, due to the definition of the number \(f(n) \), we have \(f(n-4) \) sets \(Q \) in this case. Consequently, from the above possibilities we obtain that \(f(n) = NMD(P_{n-7}) + f(n-4), n \geq 7 \).

Finally for \(n \geq 7 \), \(NMD(P_n) = NMD(P_{n-2}) + NMD(P_{n-3}) + f(n) \) and \(f(n) = NMD(P_{n-7}) + f(n-4) \). Hence we obtain for \(n \geq 6 \)
\(NMD(P_n) = NMD(P_{n-2}) + NMD(P_{n-3}) + NMD(P_{n-4}) - NMD(P_{n-6}) \). \(\square \)

References

Received: September, 2010