On Noetherian Regular δ-Near Rings and their Extensions

N. V. Nagendram1

Department of Mathematics
LakiReddy BaliReddy College of Engineering, Mylavaram A.P., India
nvn220463@yahoo.co.in

T. V. Pradeep Kumar2

ANU college of Engineering and Technology
Acharya Nagarjuna University, Nagarjuna Nagar. AP., India
pradeeptv5@gmail.com

Yanamula Venkateswara Reddy3

ANU College of Engineering and Technology
Acharya Nagarjuna University, Nagarjuna Nagar. AP., India

Abstract

A commutative ring N is said to be a Noetherian Regular δ-Near Ring if every prime ideal of N is strongly prime. We say that a commutative Noetherian Near Ring N is Noetherian Regular Near Ring if N is a Noetherian Regular δ-Near Ring if assasinator of every right ideal (i.e., a right N-module) is strongly Prime Ideal. In this paper we obtained some fundamental results related to Noetherian Regular δ-Near Ring and semi-Noetherian Regular δ-Near Rings.

Mathematics Subject Classification: 16A30

Keywords: Ore Extension, Automorphism, semi prime ideal, maximal ideal, Noetherian δ-Near Ring, Noetherian Regular δ-Near Ring

1 Introduction

Let us recall that a prime ideal P of a ring N is said to be divided if it is comparable under set inclusion to every ideal of N. A δ-Near Ring N is called...
a "Regular δ-Near Ring" if a sub-direct product of subdirectly irreducible δ-Near Ring N_i is isomorphic to a δ-Near Ring N.

Since, each N_i is isomorphic image of N δ-Near Ring and N has the IFP follows then N is a Regular δ-Near Ring. Let N be a semi prime commutative Noetherian Q-Algebra, ϕ be an automorphism of N such that N is a $\phi (x)$ ring and δ is δ-Near-Ring then

(i) if for any $U \in S.spec(N)$ with $\phi(U) = U$ and $\delta(U) \subseteq U \Rightarrow o(U) \in S.spec(N)$, then N is a semi-Noetherian Regular δ-Near Ring $\Rightarrow N(x; \phi, \delta)$ is a semi-Noetherian Regular δ-Near-Ring.

(ii) if N is a semi-Noetherian Regular Near-Ring then $o(N)$ is a Noetherian Regular δ-Near- Ring.

Throughout this paper, by a near-rings we mean zero symmetric near-ring for the basic terminology and notation the reader referred to Gunter Pilz [3]. The concept of Noetherian near-rings and Noetherian d-Near Rings was studied by by S. Ligh [5], Y.V.Reddy, C.V.L.N.Murthy. [7] and some others. In this paper we studied the concepts of Boolean Regular near-rings and Boolean Regular δ-Near Ring and obtained some results related to these concepts.

All rings are Associative with identity throughout this paper N denotes a commutative Ring with identity $1 \neq 0$.

The set of all nilpotent elements of N and the Prime radical of N are denoted by $N(N)$ and $P(N)$ respectively. The field of rational numbers and the ring of integers are denoted by Q and Z respectively. Unless and otherwise stated. For any subset J of N, right N-Module M, Annihilator Ann. Of J is denoted by Ann.(J).

Spec.$(N) =$ the set of Prime ideals of N, Ass.$(NN) =$ The set of Associated Prime ideals of N named as right N-Module N over iteself, Min.Spec$(N) =$ Set of all minimal ideals of N

Let N be a right Noetherian Near-Ring. For any uniform right N-Module J, the Assassinator of J is denoted by Assas(J). Let M be a right N-Module.

Consider, set assas$(J) / J$ is a uniform right N-sub module of $M = A(MN)$. One more class of Boolean Regular d-Near-Rings is a Noetherian Regular d-Near-Rings.
Definition 1.1. A Proper saturated set S is said to be maximal if S is not contained in any proper saturated set of N.

i.e., there does not exist S subset of T is subset of R implies either $S = T$ or $T = R$.

Definition 1.2. Let N be a Commutative Ring. Let N be a Noetherian Regular δ-Near Ring if each $P \in A(NN)$ is strongly prime i.e., P is a δ-Near-Ring of N.

Example 1.3. If N is a right Module over N itself, we note that $Ass(N_N) = A(N_N)$ [6Y of Goodearly and warfield[4]]

The article concerns the study of skew polynomial rings over Noetherian Regular δ-Near Rings. Let N be a ring, s be an endomorphism of N and d a δ-derivation of N such that $d : N \in N$ is an additive map with $\delta(ab) = \delta(a) \sigma(b) + a \delta(b)$ for every $a, b \in N$.

Example 1.4. Let σ-derivation be an endomorphism of a Noetherian near ring N and $\delta : N \rightarrow N$ be any mapping. Let $\phi : N \rightarrow M_2(N)$ defined by $\phi(\sigma n) = [\sigma(n)0 \mid \delta(a)n]$, for every $n \in N$ be a Ring homomorphism Then, δ is a σ-derivation of N.

Let $\phi(N)$ is Ore Extension $N[x; \sigma, \delta]$. If I be an ideal of N such that I is a σ stable. i.e., $\sigma(I) = I$ and I is a δ-invariant ideal of a Noetherian Near Ring. i.e., $\delta(I) \subseteq I$ then $I[x; \sigma, \delta] = \phi(I)$.

Let $N[x; \sigma, \delta] = \text{set of Polynomials with co-efficients in } N$ i.e., $\{ \sum x^i a_i, a_i \in N \}$ in which '$.' is subject to realization $ax = x \sigma(a) + \delta(a)$, for all $a \in N$.

Example 1.5. Let $N = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ where F is a field. Then $P(N) = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ let, $\sigma : N \rightarrow N$ be defined by, $\sigma((a b = a 0 0 c)) 0 c$

It can be seen that $a \sigma$ endomorphism of N and N is a $\sigma(^*)$-Ring or Noetherian Regular δ-Near-Ring.

Definition 1.6. An Integral Domain N with Quotient field F is called a Noetherian Regular δ-Near Ring (NR-δ-NR) if each Prime ideal P of N is strongly Prime i.e., $(ab \in P, a \in F, b \in F \Rightarrow \text{either } a \in P \text{ or } b \in P)$
Example 1.7. Let $F = Q(\sqrt{2})$ set $V = F + x F[[x]] = F[[x]]$ Then V is a Noetherian Regular δ-Near-Ring. Let $S = Q + Qx + x^2$ V is not a Noetherian Regular δ-Near Ring.

Definition 1.8. (i) A Prime ideal P of N is said to be strongly prime if aP, bP are Comparable ideals i.e., $aP \subseteq bP$ or $bN \subseteq aP$ for all $a, b \in N$.

(ii) A ring N is said to be Noetherian Regular δ-Near-Ring(NR-δ-NR) if each prime ideal P of N is strongly prime and denoted by $S.Spec(N)$=strongly prime ideals.

Theorem 1.9. Let N be a commutative Noetherian Regular Near-Ring(NRNR) which is also an Algebra over Q. Let σ be an automorphism of N such that N is a σ (*)-ring and δ a σ-derivation of N that is for $U \in S.Spec.(N)$ With $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow o(U) \in S.Spec.(o(N))$. Then N is a Noetherian Regular δ-Near-Ring(NR-δ-NR). This implies $o(N)$ is a Noetherian Regular δ-Near Ring(NR-δ-NR).

Definition 1.10. We recall that a Prime ideal P of N is said to be divided if it is Comparable to every ideal of N. A ring N is called a divided ring if every Prime ideal of N is divided. (Badawi[1]) It is known as Lemma (1) of Badawi,Anderson,Dobbs[2]) that a Noetherian Regular δ-Near-Ring(NR-δ-NR) is a divided ring.

Theorem 1.11. Let N be a commutative Noetherian Regular Near-Ring(NRNR) which is also an Algebra over Q. Let σ be an automorphism of N such that N is a σ (*)-ring and δ a σ-derivation of N. Then N is almost δ -divided ring \rightarrow that $o(N)$ is an almost δ-divided ring.

2 Main Results

One more class of Prime Ideals of Noetherian Regular δ-Near Ring (NR-δ-NR) is the set of Associated Prime Ideals and we are therefore motivated to investigate the above results for Associated Prime Ideals or the Assassinators of a Noetherian Regular δ-Near-Rings(NR-δ-NR).

Example 2.1. A semi prime Noetherian Near Ring is a Semi Noetherian Regular δ-Near-Ring.(SNR-δ-NR).

Definition 2.2. Let N be a ring we say that N is a semi σ -divided ring (semi - δ -divided) ring if each $P \in A(N_N)$.

Theorem 2.3. Let N be a semi Prime commutative Noetherian Q-Algebra σ be an automorphism of N such that N is a σ (*)-ring and δ a σ-derivation
Noetherian regular δ-near rings

of N such that $\sigma \delta (a) = \delta (\sigma (a))$ for every $a \in N$. Then (i) if for all $U \in S.\text{Spec}(N)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow S.\text{Spec}(o(N))$ Then N is a semi Noetherian Regular δ-Near-Ring (SNR-δ-NR) $\rightarrow N[x; \sigma, \delta]$ is Semi Noetherian Regular δ-Near-Ring (SNR-δ-NR), (ii) If N is Semi-derided ring, Then $o(N)$ is a Semi Noetherian Regular δ-Near-Ring (SNR-δ-NR)

Proof : See Prop.(2.1) of Bhat [6]

Theorem 2.4. Let N be a Noetherian Ring which is also an Algebra over Q. Let σ be an automorphism of N such that N is a $\sigma(*)$-ring and δ a σ-derivation of N. Then (i) if U is a minimal Prime ideal of N, Then $o(U)$ is a minimal prime ideal of $o(N)$ and $o(U) \cap N = U$ and (ii) if P is a minimal prime ideal of $o(N)$ then $P \cap N$ is a minimal prime ideal of N.

Proof : See lemma (2.2) of Bhat [6]

Note : The lemma is true even if N is non-commutative.

Theorem 2.5. Let N be a right or left Noetherian Regular δ-Near-Ring (NR-δ-NR) .Let s be an automorphism of N and d as $\delta-$ derivation of N.Then the Ore Extension $o(N) = N[x; s, d]$ is also right or left Noetherian Regular δ-Near-Ring (NR-δ-NR).

Proof : See theorem [2.6] of Goodearl and Warfield [4] It is known theorem (2.6) of Bhat [6] that if N is a commutative Noetherian Regular δ-Near-Ring (NR-δ-NR)where $x \notin P$, for all $P \in S.\text{Spec}(S(N))$. Then $S(N)$ is also Noetherian Regular δ-Near-Ring (NR-δ-NR).

It is also known (Theorem (2.10) of Bhat [6]) that if N is a commutative Noetherian Regular δ-Near-Ring (NR-δ-NR) of Q-Algebra which is also a Noetherian Regular δ-Near-Ring (NR-δ-NR).

Then $D(N)$ is also a Divided Noetherian Regular δ-Near-Ring (NR-δ-NR). These results have been generalized for $o(N)$ over Noetherian Regular δ-Near-Ring (NR-δ-NR) and in V K Bhat [6].

Let N be a Noetherian Regular δ-Near-Ring (NR-δ-NR). We know that $\text{Ass}(N_N)$ is finite, $\sigma^j(U) \in \text{Ass}(N_N) \forall U \in \text{Ass}(N_N) \forall j \geq 1, \exists$ an integer m suchthat $\sigma^m(U) = U, \forall U \in \text{Ass}(N_N)$.

We denote, $\cap \sigma^j(U) = U(0), j = 1 \text{ to } m$ and Since, min. $\text{Spec}(N) \leq \text{ in finite}$ (finite) and also same notation for min. $\text{spec}(N)$.

Hence proved the theorem.

Theorem 2.6. Let N be a Noetherian Regular δ-Near-Ring (NR-δ-NR) and σ be an automorphism of N. Then (i) $P \in \text{Ass}(S(N)S(N))$ $\iff \exists Q \in \text{Ass}(N_N)$ such that $s(P \cap N) = P$ and $P \cap N = Q_0$ (ii) $P \in \text{Min.}\text{Spec}(S(N))$ $\iff \exists Q \in \text{Min.}\text{Spec}(N)$ such that $S(P \cap N) = P$ and $P \cap N = Q_0$.

Proof : see theorem (2.4) of Bhat [6] Now we can give an analogue of theorem (1.3) for semi Noetherian Regular δ-Near Ring (SNR-δ-NR).
Theorem 2.7. Let N be a Noetherian Regular δ-Near-Ring (NR-δ-NR) which is also an algebra over Q. Let σ be an automorphism of N is a as σ (*)-ring and δ a σ-derivation of N. further , Let any $U \in S\text{Spec}(N)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow o(U) \in S\text{Spec}(o(N))$. Then $o(N)$ is a Noetherian Regular δ-Near Ring (NR-δ-NR).

Proof : $o(N)$ is a Noetherian Regular δ-Near-Ring (NR-δ-NR) by theorem (2.5). We note that $x \notin P$ for any Prime ideal P of $o(N)$, Ore Extension of N, as it is not a zero divisor. Let,$J \in A(o(N))$. Say, $J = \text{Ann}(I) = \text{Assas}(I)$ for some ideal I of $o(N)$ such that I is uniform as a right $o(N)$-Module. Then, $J \in \text{MinSpec}(o(N))$ where $\text{MinSpec}(o(N))= \{ \text{set of Minimal prime ideals generated by } o(N) \text{ of } N \}$. By Remark (2.1), we have $A(o(N)o(N)) = \text{Assas}(o(N)o(N))$.

By lemma (2.4), $J \cap N \in \text{MinSpec}(N)$. Also, $\sigma(J \cap N) = J \cap N$ and $\delta(J \cap N) \in J \cap N$. Now, $J \in A(o(N)o(N)) \in J \cap N$ and therefore , using the fact that $\sigma(J \cap N) = J \cap N$ and $\delta(J \cap N) \subseteq J \cap N$. And by known theorem(2.6)we get that $J \cap N = \text{Assas}(N_N) = A(N_N)$.

As we note that $(J \cap N)_{o0} = J \cap N$. Now, N is a Semi-Noetherian Regular delta-Near-Ring(SNR-δ-NR) Q-Algebra. Therefore, $J \cap N \in S\text{Spec}(N)$.

By hypothesis, $o(J \cap N) \in S\text{Spec}(o(N))$ where, $S\text{Spec}(o(N))$ = set of semi prime ideals of Ore Extension of N And Ore extension of N = set skew polynomial rings, Differential operator rings.

Further, it is easy to see that, $o(J \cap N) = J$ since, $(J \cap N) \subseteq J$ or N.

Therefore, $J \in S\text{Spec}(o(N))$ where, $S\text{Spec}(o(N))$ = set of semi prime ideals of Ore Extension of N.Therefore, $o(N)$ is a Noetherian Regular δ-Near Ring (NR-δ-NR).

For all $U \in S\text{Spec}(N)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow o(U) \in S\text{Spec}(o(N))$ cannot be deleted as extension of a strongly Prime ideal of N need not be a strongly Prime Ideals of $o(N)$.

Hence Proved the Theorem.

Example : (By Example 4 of Bhat [6]) Let us suppose, $N = Z(P)$. This infact discrete Noetherian Regular δ-Near Ring (NR-δ-NR) and therefore Ideal $P = PN$ is strongly Prime. But, $PN[x]$ is not strongly Prime in $N[x]$ be can it is not Comparable with $xN[x]$. Therefore, condition of being strongly Prime in $N[x]$ fails for $a = 1$, $b = x$.

Lemma : Let N be a semi prime commutative Noetherian Regular-Near-Ring(SNR-δ-NR) which is also a algebra over Q. Let , $\sigma(U) = U$ and $\forall U \in A(N_N))$. Further, Let any $U \in S\text{Spec}(N)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow o(U) \in S\text{Spec}(o(N))$. Then $o(N)$ is a Noetherian Regular δ-Near-Ring (NR-δ-NR). $A(N_N)$. Further, Let any $U \in S\text{Spec}(N)$ with $\sigma(U) = U$ and $\delta(U) \subseteq U \rightarrow o(U) \in S\text{Spec}(o(N))$.

Proof : Given N be a semi Prime commutative Noetherian Regular-Near-Ring (SNR-δ-NR) Algebra over Q. Let $o(N)$ is a Noetherian Regular-Near-
Let $J \in (o(N)o(N))$. Then as in theorem (2.7) above $J \cap N \subseteq A(N_N) = \text{Ass}(N_N)$.

Now, $\sigma(J \cap N) = J \cap N$.

Therefore, by Lemma (2.6) of Bhat [6] in σ-derivation of N such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in N$ and N Then N is a Semi Noetherian Regular δ-Near-Ring $\rightarrow o(N)$ is a Noetherian Regular Semi δ-Near-Ring $\rightarrow o(N)$ algebra.

These results have been generalised for $o(N)$ over almost δ-divided rings in Bhat [6] as mentioned in theorem (1.4). Hence proved the Theorem.

Theorem 2.8. Let N be a Semi Prime Commutative Noetherian Regular δ-Near-Ring $\rightarrow o(N)$ algebra over Q. Let σ be an automorphism of N such that N is a $\sigma(*)$-ring and δ is a σ-derivation of N such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in N$ and N Then N is a Semi Noetherian δ-Near-Ring $\rightarrow o(N)$ is a Noetherian Regular Semi δ-Near-Ring $\rightarrow o(N)$.

Proof: Let $o(N)$ be a Noetherian Regular δ-Near-Ring $\rightarrow o(N)$ algebra by known Theorem. Let σ can be extended an automorphism of $o(N)$ such that $\sigma(x) = x$ and δ can be extended to a σ-derivation of $o(N)$ such that $\delta(x) = 0$.

Let $J \in A(o(N)\sigma(N))$ and $0 \in K$ be a proper ideal of $o(N)$ such that $\sigma(K) = K$ and $\delta(K) \subseteq K$. Now by theorem (2.7), we have $\sigma(J \cap N) = J \cap N \delta (J \cap N) \subseteq J \cap N$. So, $J \cap N \subseteq \text{Ass}(N_N) = A(N_N)$. Also, $K \cap \text{NisanidealofNwith}\sigma(K \cap N) = K \cap N \delta (K \cap N) \subseteq K \cap N$. Now, N is a Semi δ-divided ring and therefore, $J \cap N \subseteq K \cap N$. Therefore, $o(J \cap N) \subseteq o((K \cap N)) \subseteq J \subseteq K$.

Therefore, $o(N)$ is a Noetherian Regular Semi δ-Near-Ring $\rightarrow o(N)$ algebra. Hence proved the Theorem.

Received: August, 2010