Qualitative Behavior of a Fourth-Order Rational Difference Equation

S. Ebru Das

Yildiz Technical University, Department of Mathematics, Faculty of Science and Art, Esenler, Istanbul, Turkey
ebrudas@gmail.com

Mustafa Bayram

Yildiz Technical University, Department of Mathematical Engineering, Faculty of Chemical and Metallurgical Engineering, Esenler, Istanbul, Turkey

Abstract

In this paper, we investigate the qualitative behavior of the fourth-order difference equation

\[x_{n+1} = \frac{(x_{n-1}x_{n-2} + x_{n-3})x_{n-3} + 1)}{(x_{n-2}x_{n-3} + 1)} \]

for \(n = 0, 1, \ldots \)

where \(a \in (0, \infty) \) and the initial conditions \(x_{-3}, x_{-2}, x_{-1}, x_0 \in (0, \infty) \).

Keywords: Difference equation, Stability, Semi-cycle, Globally stable

1 Introduction

Recently there has been a great interest in studying the qualitative behaviors of rational difference equations. Berenhaut, Foley and Stevic [1] has showed that the unique positive equilibrium \(\bar{y} = 1 \) of the difference equation \(y_n = \frac{y_{n-k} + y_{n-m}}{1 + y_{n-k}y_{n-m}} \) is globally asymptotically stable. Y. Chen and X. Li [2] investigated the dynamical properties of the fourth-order nonlinear difference equation \(x_{n+1} = \frac{(x_{n-1}^a + x_{n-3})x_{n-3} + 1)}{(x_{n-2}^a x_{n-3} + 1)} \) with
nonnegative initial conditions and \(a \in [0,1) \). For more related work see [4-7].

To be motivated by the above studies, in this paper, we consider the following fourth-order nonlinear difference equation:

\[
x_{n+1} = \frac{x_{n-1}^a x_{n-2} + x_{n-1} x_{n-3}^a + 1}{x_{n-2}^a + x_{n-3}^a + 1}, \quad n = 0,1,\ldots
\]

(1.1)

where \(a \in (0,\infty) \) and the initial conditions \(x_{-3}, x_{-2}, x_{-1}, x_0 \in (0,\infty) \). It is easy to see that the positive equilibrium \(\bar{x} = 1 \) of Eq.(2.1) satisfies \(\bar{x} = (2\bar{x}^{-1} + 1)/(2\bar{x} + 1) \).

Definition 1.1: A positive semi-cycle of a solution \(\{x_n\}_{n=-3}^\infty \) of Eq. (1.1) consists of a “string” of terms \(\{x_i, x_{i+1}, \ldots, x_m\} \) all greater than or equal to the equilibrium \(\bar{x} \), with \(\ell \geq -3 \) and \(m \leq \infty \) such that (either \(\ell = -3 \) or \(\ell > 3 \) and \(x_{\ell+1} < \bar{x} \)) and (either \(m = \infty \) or \(m < \infty \) and \(x_{m+1} < \bar{x} \)). A negative semi-cycle of a solution \(\{x_n\}_{n=-3}^\infty \) of Eq. (1.1) consists of a “string” of terms \(\{x_i, x_{i+1}, \ldots, x_m\} \) all less than \(\bar{x} \), with \(\ell \geq -3 \) and \(m \leq \infty \) such that (either \(\ell = -3 \) or \(\ell > 3 \) and \(x_{\ell+1} \geq \bar{x} \)) and (either \(m = \infty \) or \(m < \infty \) and \(x_{m+1} \geq \bar{x} \)). The length of a semi-cycle is the number of the total terms contained in it.

Definition 1.2: A solution \(\{x_n\}_{n=-3}^\infty \) of Eq. (1.1) is said to be eventually trivial if \(x_n \) is eventually equal to \(\bar{x} = 1 \); Otherwise is said to be nontrivial. A solution \(\{x_n\}_{n=-3}^\infty \) of Eq. (1.1) is said to be eventually positive (negative) if \(x_n \) is eventually greater (less) than \(\bar{x} = 1 \).

2 Three Lemmas

Lemma 2.1. A positive solution \(\{x_n\}_{n=-3}^\infty \) of Eq. (1.1) is eventually equal to 1 if and only if

\[
(x_{-1} - 1)(x_{-2} - 1) = 0
\]

(2.1)

Proof. Assume that (2.1) holds.

(a) if \(x_{-1} = 1 \), then \(x_n = 1 \) for \(n \geq 1 \)

(b) if \(x_{-2} = 1 \), then \(x_n = 1 \) for \(n \geq 14 \).

Conversely, assume that

\[
(x_{-1} - 1)(x_{-2} - 1) \neq 0
\]

(2.2)

Then one can show that \(x_n \neq 1 \) for any \(n \geq 1 \). Assume that some \(N \geq 1 \), \(x_N = 1 \) and that \(x_n \neq 1 \) for \(-2 \leq n \leq N - 1 \).

(2.3)

It is easy to see that

\[
1 = x_N = (x_{N-2} x_{N-3} + x_{N-2} x_{N-4})/(x_{N-3} + x_{N-4} + 1)
\]

which implies

\[
(x_{N-3} + x_{N-4})(1 - x_{N-2}) = 0.
\]

Obviously, this contradicts (2.3).

Remark 2.1. If the initial conditions do not satisfy Eq. (1.1), then, for any
solution \(\{x_n\} \) of Eq. (1.1), \(x_n \neq 1 \) for \(n \geq -3 \). Here, the solution is a nontrivial one.

Lemma 2.2. Let \(\{x_n\}_{n=-3}^{\infty} \) be a nontrivial positive solution of Eq. (1.1). Then the following conclusions are true for \(n \geq 0 \):

(a) \((x_{n+1}-1)(x_{n-1}-1) > 0 \)

(b) \((x_{n+1} - x_{n-1})(x_{n-1} - 1) < 0 \)

(c) \((x_{n+1} - 1)(x_{n-1} - 1)(x_{n-3} - 1) > 0 \)

Lemma 2.3. If \(x_{-3}, x_{-2}, x_{-1}, x_0 \in (1, \infty) \), then \(\{x_n\}_{n=-3}^{\infty} \) has a positive semi-cycle with an infinite number of terms and it monotonically tends to the positive equilibrium point \(x_1 \).

Proof. If \(x_{-3}, x_{-2}, x_{-1}, x_0 \in (1, \infty) \), from Lemma 2.2.(a) and (b), for \(n \geq -3 \)

\[
1 < x_{2k+1} < ... < x_1 < x_{-1} \quad \text{and} \quad 1 < x_{2k} < ... < x_2 < x_0
\]

Clearly, \(\{x_n\}_{n=-3}^{\infty} \) has a positive semicycle with an infinite number of terms and monotonically decreasing for \(n \geq 0 \). So the limit \(\lim_{n \to \infty} x_n = L \) exists and finite.

Taking the limits on both sides of Eq. (1.1), we have \(L = \left(2L^{x_{1L}} + 1\right) / \left(2L^{1} + 1\right) \).

3 Main Results and their Proofs

Here we confine us to consider the situation of the strictly oscillatory solution of Eq. (1.1).

Theorem 3.1. Let \(\{x_n\}_{n=-3}^{\infty} \) be a strictly oscillatory solution of Eq. (1.1). Then the rule for the lengths of positive and negative semi-cycles of this solution to successively occur is \(...,1^+, 1^-, 3^+, 1^-, 1^+, 3^-, 1^-, ..., \) or \(..., 2^-, 1^+, 2^-, 1^+, 2^-, 1^+, ..., \) or \(..., 2^+, 4^-, 2^+, 4^-, 2^+, 4^-, ..., \).

Proof. By Lemma 2.3. (c), one can see the length of a positive semi-cycle is not larger than 3 and the length of a negative semi-cycle is at most 4. Based on the strictly oscillatory character of the solution, for some \(p \geq 0 \), that one of the following four cases must occur:

- **Case 1.** \(x_{p-3} > 1, x_{p-2} < 1, x_{p-1} > 1 \) and \(x_p > 1 \)
- **Case 2.** \(x_{p-3} > 1, x_{p-2} < 1, x_{p-1} < 1 \) and \(x_p > 1 \)
- **Case 3.** \(x_{p-3} > 1, x_{p-2} < 1, x_{p-1} < 1 \) and \(x_p < 1 \)
- **Case 4.** \(x_{p-3} > 1, x_{p-2} < 1, x_{p-1} > 1 \) and \(x_p < 1 \)

If Case 1 occurs, it follows from Lemma 2.2.(c) that
It means that the rule of the lengths of positive and negative semi-cycles of the solution of Eq. (1.1) to occur successively is ...,1,1,3,1,1,1,3,1,....

If Case 2 occurs, it follows from Lemma 2.2.(c) that

It means that the rule of the lengths of positive and negative semi-cycles of the solution of Eq. (1.1) to occur successively is ...,2,1,2,1,2,1,....

If Case 3 occurs, it follows from Lemma 2.2.(c) that

This shows that the rule for the numbers of terms of positive and negative semi-cycles of the solution of Eq. (1.1) to successively occur is ...,2+,4−,2+,4−,2+,4−,...

When Case 4 happens, a similar deduction leads to that the regulation for the lengths of positive and negative semi-cycles of the solution of Eq. (1.1) to occur successively is ...,1+,3−,1−,1+,3−,1−,....

Theorem 3.2. Assume that \(a \in (0, \infty) \). Then the positive equilibrium of Eq. (1.1) is globally asymptotically stable.

Proof. We must prove that the positive equilibrium point \(\bar{x} \) of Eq. (1.1) is both locally asymptotically stable and globally attractive. The linearized equation of Eq. (1.1) is

\[
y_{n+1} = 0.y_n + \frac{2}{3}y_{n-1} + 0.y_{n-2} + 0.y_{n-3} , \quad n = 0,1,\ldots
\]

From [3, Remark 1.3.7], \(\bar{x} \) is locally asymptotically stable. It remains to verify that every positive solution \(\{x_n\}_{n=3}^{\infty} \) of Eq. (1.1) converges to 1 as \(n \to \infty \).

Namely, we want to prove

\[
\lim_{n \to \infty} x_n = \bar{x} = 1
\]

(3.1)

If the solution is nonoscillatory about the positive equilibrium point \(\bar{x} \) of Eq. (1.1), then from Lemma 2.1 and Lemma 2.3, the solution is either equal to 1 or eventually positive one which has an infinite number of terms and monotonically tends to the positive equilibrium point \(\bar{x} \) of Eq. (1.1), and so Eq (3.1) holds.
Consider now \(\{x_n\} \) to be strictly oscillatory about the positive equilibrium point \(x^* \) of Eq. (1.1).

By virtue of Theorem 3.1, one understands that the rule for the lengths of positive and negative semi-cycles which occur successively is \(1^-, 3^+, 1^-, 1^-, 3^+, 1^-, \ldots \) or \(2^-, 1^-, 2^-, 1^+, 2^-, \ldots \) or \(2^+, 4^-, 2^+, 4^-, 2^+, \ldots \) or \(2^-, 4^-, 2^-, 4^-, 2^+, \ldots \) or \(1^-, 3^+, 1^-, 1^-, 3^+, 1^-, \ldots \) or \(1^-, 3^+, 1^-, 1^-, 3^+, 1^-, \ldots \).

First, we investigate the case is \(1^-, 3^+, 1^-, 1^-, 3^+, 1^-, \ldots \).

For simplicity, we denote by \(\{x_p\}^+ \) the terms of a positive semi-cycle of length one, followed by \(\{x_{p+1}\}^- \) a negative semi-cycle with length one, then a positive semi-cycle \(\{x_{p+2}, x_{p+3}, x_{p+4}\}^+ \) and a negative semi-cycle \(\{x_{p+5}\}^- \), and so on.

Namely, the rule for the lengths of positive and negative semi-cycles to occur successively can be periodically expressed as follows:
\[
\{x_{pn+6}\}^+, \; \{x_{pn+6n}^-\}, \; \{x_{pn+6n+1}, x_{pn+6n+3}, x_{pn+6n+4}\}^+, \; \{x_{pn+6n+5}\}^-,
\]
\(n=0, 1, \ldots \)

then the following results can be easily observed:

(i) \(x_{pn+6n+6} < x_{pn+6n+4} < x_{pn+6n+2} < x_{pn+6n} \);
(ii) \(x_{pn+6n+3} > 1, \; x_{pn+6n+1} < 1 \).

Inequality (i) can be easily seen from Lemma 2.2(b) for \(n=0, 1, \ldots \).

From the observations of
\[
x_{pn+6n+6} = \frac{x_{pn+6n+3}a^x_{pn+6n+2} + x_{pn+6n+3}^a x_{pn+6n+1} + 1}{x_{pn+6n+3} x_{pn+6n+2} + x_{pn+6n+1} + 1} \geq \frac{x_{pn+6n+3} x_{pn+6n+2} + x_{pn+6n+3} x_{pn+6n+1} + 1}{x_{pn+6n+3} (x_{pn+6n+2} + x_{pn+6n+1}) + 1}
\]

Similarly \(x_{pn+6n+3} x_{pn+6n+1} < 1 \) can be shown. Combining the above inequalities, one can derive
\[
x_{pn+6n+1} < \frac{1}{x_{pn+6n+3}} < x_{pn+6n+5} < 1 \quad (3.2)
\]
\[
1 < x_{pn+6n+6} < x_{pn+6n+4} < x_{pn+6n+2} < x_{pn+6n} \quad (3.3)
\]

It follows from (3.2) that \(\{x_{pn+6n+1}\} \) is increasing with upper bound 1. So, the limit
\[
limit_{n \to \infty} x_{pn+6n+1} = L \quad (3.4)
\]
exists and finite. Accordingly, by view of (3.2), we obtain
\[
lim x_{pn+6n+5} = L \quad \text{and} \quad \lim x_{pn+6n+3} = \frac{1}{L} \quad (3.5)
\]

It is easy to see from (3.3) that \(\{x_{pn+6n}\} \) is decreasing with lower bound 1. So, the limit
\[
\lim_{n \to \infty} x_{p+6n} = M
\]
exists and finite. Accordingly, by view of (3.3), we obtain
\[
\lim_{n \to \infty} x_{p+6n+2} = \lim_{n \to \infty} x_{p+6n+4} = \lim_{n \to \infty} x_{p+6n+6} = M
\]
Taking the limits on both sides of
\[
x_{p+6n+6} = \frac{x_{p+6n+4}x_{p+6n+3} + x_{p+6n+4}x_{p+6n+2} + 1}{x_{p+6n+3} + x_{p+6n+2} + 1},
\]
has \(M = \left(ML^2 + M^2 + 1\right) / \left(L^2 + M^2 + 1\right) \), which gives rise to \(M = 1 \).
Taking the limits on both sides of
\[
x_{p+6n+4} = \frac{x_{p+6n+3}x_{p+6n+2} + x_{p+6n+3}x_{p+6n+1} + 1}{x_{p+6n+2} + x_{p+6n+1} + 1},
\]
has \(L = \left(\frac{1}{L} M^2 + \frac{1}{L} L^2 + 1\right) / \left(M^2 + L^2 + 1\right) \), which gives rise to \(L = 1 \).
So we can easily see that
\[
\lim_{n \to \infty} x_{p+6n+k} = 1, \quad k = 0,1,2,3,4,5,6
\]
For ..., \(2^-, 1^+, 2^-, 1^+, 2^-, ..., \) and ..., \(2^-, 4^-, 2^+, 4^-, 2^+, 4^-, ..., \) can be similarly shown.

References

Received: September, 2010