Common Fixed Point Theorem for Occasionally Weakly Compatible Mapping in Q-Fuzzy Metric Spaces Satisfying Integral type Inequality

Kamal Wadhwa¹ and Mirza Farhan Ahmed Beg²

Abstract
This paper presents some common fixed point theorem for Occasionally Weakly Compatible mapping in Q-fuzzy metric spaces satisfying integral type inequality.

Keywords: Contractive condition of integral type, Fixed point, Occasionally Weakly Compatible mapping, Q-fuzzy metric spaces, t-norm

1. Introduction

The Q-fuzzy metrics spaces is introduced by Guangpeng Sun and Kai Yang[7] which can be considered as a Generalization of fuzzy metric spaces. Sessa [18] improved commutativity condition in fixed point theorem by introducing the notion of weakly commuting maps in metric space.

¹Kamal wadhwa is with Govt. Narmada P.G. College, Hoshangabad, Madhya Pradesh, India.
²Mirza Farhan Ahmed Beg is with the Bansal College of Engineering, Mandideep, Bhopal, Madhya Pradesh, India. (Corresponding author ph.no. 09229840566) email: beg_farhan26@yahoo.com
R. Vasuki [14] proved fixed point theorems for R-weakly commuting mapping Pant [15,16,17] introduced the new concept of reciprocally continuous mappings and established some common fixed point theorems. The concept of compatible maps by [10] and weakly compatible maps by [8] in fuzzy metric space is generalized by A. Al Thagafi and Naseer Shahzad [1] by introducing the concept of occasionally weakly compatible mappings. Recent results on fixed point in Q-fuzzy metric space can be viewed in [7]. In this paper we have improved the result of Guangpeng Sun and Kai Yang [7] by proving the same theorem with more weaker condition occasionally weakly compatible mappings in Q-fuzzy metric spaces satisfying integral type inequality.

2. Preliminary Notes

Definition 2.1[2] A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous t-norm if it satisfy the following condition:

(i) $*$ is associative and commutative.
(ii) $*$ is continuous function.
(iii) $a * 1 = a$ for all $a \in [0,1]$.
(iv) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0,1]$.

Definition 2.2[7] A 3-tuple $(X, Q, *)$ is called a Q-fuzzy metric space if X is an arbitrary (non-empty) set $*$ is a continuous t-norm, and Q is a fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each $x, y, z, a \in X$ and $t, s > 0$:

(i) $Q(x, x, y, t) > 0$ and $Q(x, x, y, t) \leq Q(x, y, z, t)$ for all $x, y, z \in X$ with $z = y$.
(ii) $Q(x, y, z, t) = 1$ if and only if $x = y = z$.
(iii) $Q(x, y, z, t) = Q(p(x, y, z), t)$ (symmetry) where p is a permutation function.
(iv) $Q(x, a, a, t) * Q(a, y, z, s) \leq Q(x, y, z, t + s)$.
(v) $Q(x, y, z, t)(0, \infty) \rightarrow [0,1]$ is continuous.

A Q-fuzzy metric space is said to be symmetric if $Q(x, y, y, t) = Q(x, x, y, t)$ for all $x, y \in X$.

Definition 2.3[6] Let $(X, Q, *)$ be a Q-fuzzy metric space. A sequence $\{x_n\}$ in X converges to x if and only if $Q(x_m, x_n, x, t) \rightarrow 1$ as $n \rightarrow \infty$, for each $t > 0$. It is called a Cauchy sequence if for each $0 < \varepsilon < 1$ and $t > 0$, there exist $n_0 \in \mathbb{N}$ such that $Q(x_m, x_n, x, t) > 1 - \varepsilon$ for each $l, n, m \geq n_0$.

Definition 2.4 [6]: The Q-fuzzy metric space is called to be complete if every Cauchy sequence is convergent, the sequence \(\{x_n\} \) in \(X \) also converges to \(x \) if and only if \(Q(x_{n},x_{n},x,t) \to 1 \) as \(n \to \infty \), for each \(t > 0 \) and it is a Cauchy sequence if for each \(0 < \varepsilon < 1 \) and \(t > 0 \), there exist \(n_0 \in \mathbb{N} \) such that \(Q(x_{m},x_{n},x_{n}) > 1 - \varepsilon \) for each \(n,m \geq n_0 \).

Lemma 2.5 [7]: If \((X,Q,*) \) be a Q-fuzzy metric space, then \(Q(x,y,z,t) \) is non-decreasing with respect to \(t \) for all \(x,y,z \) in \(X \).

Proof: Proof is this is implicated in [7].

Lemma 2.6 [7]: Let \((X,Q,*) \) be a Q-fuzzy metric space.
(a) If there exists a positive number \(k < 1 \) such that:
\[
Q(y_{n+2},y_{n+1},y_{n+1},kt) \geq Q(y_{n+1},y_{n},y_{n},t), t > 0, n \in \mathbb{N}
\]
then \(\{y_n\} \) is a Cauchy sequence in \(X \).
(b) If there exists \(k \in (0,1) \) such that \(Q(x,y,y,kt) \geq Q(x,y,y,t) \) for all \(x,y \in X \) and \(t > 0 \) then \(x = y \).

Proof: By the assume \(\lim_{n \to \infty} Q(x,y,z,t) = 1 \) and the property of non-decreasing, it is easy to get the results.

Definition 2.7 [3]: Let \(X \) be a set, \(f \) and \(g \) selfmaps of \(X \). A point \(x \in X \) is called a coincidence point of \(f \) and \(g \) iff \(fx = gx \). We shall call \(w = fx = gx \) a point of coincidence of \(f \) and \(g \).

Definition 2.8 [7]: Let \(f \) and \(g \) be self maps on a Q-fuzzy metric space \((X,Q,*) \). Then the mappings are said to be weakly compatible if they commute at their coincidence point, that is, \(fx = gx \) implies that \(fgx = gfx \).

Definition 2.9 [7]: Let \(f \) and \(g \) be self maps on a Q-fuzzy metric space \((X,Q,*) \). The pair \((f,g) \) is said to be compatible if \(\lim_{n \to \infty} Q(fgx_{n},gfx_{n},gx_{n},t) = 1 \) whenever \(\{x_n\} \) is a sequence in \(X \) such that \(\lim_{n \to \infty} fx_{n} = \lim_{n \to \infty} gfx_{n} = z \) for some \(z \in X \).

Definition 2.10 [1]: Two self maps \(f \) and \(g \) of a set \(X \) are occasionally weakly compatible (owc) iff there is a point \(x \) in \(X \) which is coincidence point of \(f \) and \(g \) at which \(f \) and \(g \) commute. Al-ThagaW and Naseer [1](2008) shown that occasionally weakly is weakly compatible but converse is not true.

Example: Let \(R \) be the usual metric space. Define \(S,T : R \to R \) by \(Sx = x \) and \(Tx = x^3 \) for all \(x \in R \). Then \(Sx = Tx \) for \(x = 0, 2 \) but \(ST0 = TS0 = ST2 \neq T2 \).
TS2. S and T are occasionally weakly compatible self maps but not weakly compatible.

Lemma 2.11 [1]: Let X be a set, f, g owc self maps of X. If f and g have unique point of coincidence, w = fx = gx, then w is the unique common fixed point of f and g.

3. Main Result

Theorem 3.1: Let f, T, g and S a self mapping of a complete symmetric Q-fuzzy metric space with continuous t-norm satisfying the following condition
(i) The pair {f, T} and {g, S} be owc.
(ii) For all x, y in X, k in (0,1), t > 0 such that
\[\int_0^t \phi(t) dt \leq \int_0^t Q(fx, gy, sy, yt) + Q(gy, sy, sy, yt) + Q(fx, sy, yt) \phi(t) dt \]
where \(\phi(t): R^+ \rightarrow R \) is a Lebesgue-integrable mapping which is summable, nonegative and such that \(\int_0^e \phi(t) dt > 0 \) for each \(e > 0 \) then there exist a unique point \(w \in X \) such that \(f w = Tw = w \) and a unique point \(z \in X \) such that \(g z = Sz = z \). Moreover, \(z = w \) so that there is a unique common fixed point of f, g, S and T.

Proof: Let the pair \{f, T\} and \{g, S\} be owc, so there are point \(x, y \in X \) such that \(fx = Tx \) and \(gy = Sy \). We claim that \(fx = gy \). If not by inequality (ii)
\[\int_0^t \phi(t) dt \geq \int_0^t Q(fx, gy, gy, yt) + Q(gy, gy, gy, yt) + Q(fx, gy, gt) \phi(t) dt \]
\[\geq \int_0^t Q(fx, gy, yt) + Q(gy, gy, yt) \phi(t) dt \]
\[\geq \int_0^t Q(fx, gy, yt) \phi(t) dt \]
Therefore \(fx = gy \) i.e. \(fx = Tx = gy = Sy \).

Suppose that there is another point \(z \) such that \(f z = T z = z \) then by (1) we have \(f z = T z = g y = Sy \). So \(fx = fz \) and \(w = fx = Tx \) is the unique point of coincidence of f and g by Lemma 2.11 w is the only common fixed point of f and g. Similarly there is a unique point \(z \in X \) such that \(gz = Sz \).

Assume that \(w \neq z \). We have
\[\int_0^t Q(w, z, z, rt) \phi(t) dt \geq \int_0^t Q(fw, gz, Sz, rt) \phi(t) dt \]
\[\geq \int_0^t Q(Tw, Sz, Sz, rt) + Q(gz, Sz, Sz, rt) + Q(fw, Sz, Sz, rt) \phi(t) dt \]
\[= \int_0^t Q(w, z, z, rt) + Q(z, z, z, rt) + Q(w, zz, rt) \phi(t) dt \]
\[\geq \int_0^t Q(w, z, z, rt) + Q(z, z, z, rt) + Q(w, zz, rt) \phi(t) dt \]
\[\geq \int_0^t Q(w, z, z, rt) \phi(t) dt \]
Therefore we have \(z = w \) and by Lemma 2.11 \(z \) is unique common fixed point of \(f, g, S \) and \(T \). The uniqueness of the fixed point holds from (ii).

Theorem 3.2: Let \(f, T, g \) and \(S \) a self mapping of a complete symmetric Q-fuzzy metric space with continuous t-norm satisfying the following condition

(i) The pair \(\{ f, T \} \) and \(\{ g, S \} \) be owc.

(ii) For all \(x, y \) in \(X, k \) in \((0,1)\), t>0 such that

\[
\phi(t)dt \geq \int_0^1 \phi(t)dt
\]

where \(\phi: \mathbb{R} \to \mathbb{R} \) is a Lebesgue-integrable mapping which is summable, nonnegative and such that \(\int_0^\epsilon \phi(t)dt > 0 \) for each \(\epsilon > 0 \) and \(\phi: [0,1] \to [0,1] \) such that \(\phi(t) > t \) for all \(0 < t < 1 \), then there exist a unique common fixed point of \(f, g, S \) and \(T \).

Proof: The proof follows from Theorem 3.1

Theorem 3.3: Let \(f, T, g \) and \(S \) a self mapping of a complete symmetric Q-fuzzy metric space with continuous t-norm satisfying the following condition

(i) The pair \(\{ f, T \} \) and \(\{ g, S \} \) be owc.

(ii) For all \(x, y \) in \(X, k \) in \((0,1)\), t>0 such that

\[
\int_0^1 \phi(t)dt \geq \int_0^1 \phi(t)dt
\]

where \(\phi: \mathbb{R} \to \mathbb{R} \) is a Lebesgue-integrable mapping which is summable, nonnegative and such that \(\int_0^\epsilon \phi(t)dt > 0 \) for each \(\epsilon > 0 \) and \(\phi: [0,1] \to [0,1] \) such that \(\phi(t) > t \) for all \(0 < t < 1 \), then there exist a unique common fixed point of \(f, g, S \) and \(T \).

Proof: Let the pair \(\{ f, T \} \) and \(\{ g, S \} \) be owc, so there are points \(x, y \in X \) such that \(f x = T x \) and \(g y = S y \). We claim that \(f x = g y \). If not by inequality (ii)

\[
\int_0^1 \phi(t)dt \geq \int_0^1 \phi(t)dt
\]

Therefore \(f x = g y \) i.e. \(fx = Tx = gy = Sy \).

Suppose that there is another point \(z \) such that \(f z = T z \) then by (ii) we have \(f z = T z = g y = S y \) so \(f x = f z \) and \(w = f x = T x \) is the unique point of coincidence of \(f \) and \(g \) by Lemma 2.11 \(w \) is the only common fixed point of \(f \) and \(g \). Similarly there is a unique point \(z \in X \) such that \(z = gz = Sz \).

Assume that \(w \neq z \). We have

\[
\int_0^1 \phi(t)dt \geq \int_0^1 \phi(t)dt
\]
\[z = w \] by Lemma 2.11 and \(z \) is unique common fixed point of \(f, g, S \) and \(T \). The uniqueness of the fixed point holds from (ii).

References

Received: May, 2011