Majority Domination Edge Critical Graphs

J. Joseline Manora

Department of Mathematics, T.B.M.L. College
Porayar-609 307, India
joseline-manora@yahoo.co.in

V. Swaminathan

Ramanujan Research Center
Saraswathi Narayanan College
Madurai-625 022, Tamilnadu, India

Abstract

This paper deals the graphs for which the removal of any edge changes the majority domination number of the graph. γ_M-critical edges, γ_M-redundant edges, γ_M-durable graphs and γ_M-critical graphs are studied. Further, majority domination critical edges and majority domination critical graphs are characterized.

Keywords: Majority Dominating Set, γ_M-critical edges and graphs

1 Introduction

By a graph we mean a finite undirected graph without loops or multiple edges. Let $G = (V, E)$ be a finite graph and v be a vertex in V. The closed neighborhood of v is defined by $N[v] = N(v) \cup \{v\}$. The closed neighborhood of a set of vertices S is denoted as $N[S]$ and is $\cup \lim_{s \in S} N[s]$.

Definition 1.1 A subset $S \subseteq V$ of vertices in a graph $G = (V, E)$ is called a Majority Dominating Set if at least half of the vertices of V are either in
S or adjacent to elements of S. (i.e.) $|N[S]| \geq \lceil \frac{|V(G)|}{2} \rceil$.

A majority dominating set S is minimal if no proper subset of S is a majority dominating set. The minimum cardinality of a minimal majority dominating set is called the majority domination number and is denoted by $\gamma_M(G)$. The maximum cardinality of a minimal majority dominating set is denoted by $\Gamma_M(G)$. Majority dominating sets have super hereditary property.

2 Change of Majority Domination in the case of removal of a single edge

The graphs in CER were characterised by Bauer et al. and H. B. Waliker and B. D. Acharya [5]. Let $(G - e)$ denotes the graph formed by removing an edge e from G. Thus a graph G has the property that $\gamma_M(G - e) = \gamma_M(G) + 1$, for all $e \in E(G)$. CER - Changing Edge Removal and UER - Unchanging Edge Removal.

Definition 2.1 (1). For any graph G, CER with respect to majority domination is defined by

CER$_M$: $\gamma_M(G - e) \neq \gamma_M(G)$, for all $e \in E(G)$.

UER$_M$: $\gamma_M(G - e) = \gamma_M(G)$, for all $e \in E(G)$.

(2). For any graph G, $E_M^0(G)$ and $E_M^+(G)$ are defined by

$E_M^0(G) = \{e \in E(G) : \gamma_M(G - e) = \gamma_M(G)\}$

$E_M^+(G) = \{e \in E(G) : \gamma_M(G - e) > \gamma_M(G)\}$.

Proposition 2.2 Let G be a graph and H be a spanning subgraph of G. Then $D_M(H) \subseteq D_M(G)$, $D_M(G)$ denotes the set of all majority dominating sets of G.

Corollary 2.3 Let G be a graph and x be any edge of G. Then $\gamma_M(G - x) \geq \gamma_M(G)$.

Proposition 2.4 Let G be any graph and x be any edge of G. Then exactly one of the following is true.

(i) $\gamma_M(G - x) = \gamma_M(G)$

(ii) $\gamma_M(G - x) = \gamma_M(G) + 1$
Proof: Let \(x = uv \) be any edge of \(G \) and \((G - x) \) is a spanning subgraph of \(G \). By corollary 2.3, \(\gamma_M(G - x) \geq \gamma_M(G) \)(1)
\(\gamma_M(G - x) = \gamma_M(G) + k \) for some \(k \geq 0 \)(2)
Claim: \(k \leq 1 \). Let \(H = (G - x) \). Let \(D \) be any minimum majority dominating set of \(G \).

Case (i): \(u \) and \(v \) are adjacent in \(D \).

Case (ii): \(u \) and \(v \) are adjacent in \(V - D \). (Similar proof if \(u \in V - D \) and \(v \in D \).

Then \(D \cup \{ v \} \) is a majority dominating set of \((G - x) \). \(\gamma_M(G - x) \leq |D \cup \{ v \}| = |D| + 1 \). \(\gamma_M(G - x) \leq \gamma_M(G) + 1 \). By (2), \(\gamma_M(G) + k \leq \gamma_M(G) + 1 \) implies \(k \leq 1 \). Hence the theorem.

Definition 2.5 Let \(G = (V, E) \) be any graph and \(x \) be any edge of \(G \).

(1). An edge \(x \) is \(\gamma_M \)-critical if \(\gamma_M(G - x) = \gamma_M(G) + 1 \). (2). An edge \(x \) of \(G \) is called \(\gamma_M \)-redundant if \(\gamma_M(G - x) = \gamma_M(G) \). (3). A graph \(G \) is called \(\gamma_M \)-durable if each edge of \(G \) is \(\gamma_M \)-redundant.

3 Characterisation of \(\gamma_M \)-critical edge

Theorem 3.1 An edge \(x = uv \) of a graph \(G \) is \(\gamma_M \)-critical if and only if for every minimum majority dominating set \(D \), the following three conditions hold:

(i) \(u \) and \(v \) do not both belong to \(D \) or both belong to \(V - D \).

(ii) If \(v \in V - D \) then \(N(v) \cap D = \{ u \} \). A similar result holds if \(u \in V - D \).

(iii) Suppose \(u \in D \) and \(v \in V - D \). Then \(|N[D] - \{ v \}| < \left\lceil \frac{p}{2} \right\rceil \).

Proof: Let \(x = uv \) be a \(\gamma_M \)-critical edge. Let \(D \) be a minimum majority dominating set of \(G \). Then \(|N_G[D]| \geq \left\lceil \frac{p}{2} \right\rceil \).

If the condition (i) is not true for a particular \(D \in D_{M_0}(G) \), then either \(u, v \in D \) or \(u, v \in V - D \). In either case, \(D \) is again a majority dominating set of \((G - x) \). Therefore, \(\gamma_M(G - x) \leq |D| = \gamma_M(G) \).

By corollary 2.3, \(\gamma_M(G - x) \geq \gamma_M(G) \). Hence \(\gamma_M(G - x) = \gamma_M(G) \) and it follows that \(x \) is a \(\gamma_M \)-redundant edge, a contradiction.

Suppose condition (ii) is not true. Then \(D \) is a majority dominating set of \((G - x) \), a contradiction.

Suppose condition (iii) is not true. Then \(u \in D \), \(v \in V - D \) and \(|N_G[D] - \{ v \}| \geq \left\lceil \frac{p}{2} \right\rceil \).
Claim: Suppose \(\gamma(G - x) = \gamma(G) + 1 \).

Suppose this is not true, then by proposition 2.4, \(\gamma(G - x) = \gamma(G) \). Hence \(|N[v] \cap D| \geq 2 \) are \(|N[D] - \{v\}| \geq \left\lceil \frac{p}{2} \right\rceil \). Therefore condition (ii) or (iii) is not satisfied which is a contradiction. Thus \(x \) is a \(\gamma_M \)-critical edge.

\section{\(\gamma_M \)-critical Graph}

\textbf{Definition 4.1} A graph \(G \) is called \(\gamma_M \)-critical if for every edge \(x \) of \(G \),
\[\gamma_M(G - x) = \gamma_M(G) + 1. \]

\textbf{Characterisation of \(\gamma_M \)-critical Graph}

\textbf{Theorem 4.2} A graph \(G \) is \(\gamma_M \)-critical if and only if
\[G = (K_{1,r_1} \cup K_{1,r_2} \cup \ldots \cup K_{1,r_s}) \cup [p - (r_1 + r_2 + \ldots + r_s + s)]K_1 \]
where \(2 \leq (r_1 + r_2 + \ldots + r_s + s) \leq \left\lceil \frac{p}{2} \right\rceil \).

\textbf{Proof:} Let \(D \) be a \(\gamma_M \)-set of \(G \). Suppose \(D \) is not independent. Then there is an edge \(x = uv \in E(G) \) for some \(u, v \in D \). Then \(\gamma_M(G - x) = |D| = \gamma_M(G) \), a contradiction to \(G \) is \(\gamma_M \)-critical. Therefore \(D \) is independent.

Suppose \(V - D \) is not independent, then there is an edge \(x = uv \in E(G) \) for some \(u, v \in V - D \). Then \(\gamma_M(G - x) = |D| = \gamma_M(G) \), a contradiction. Therefore \(V - D \) is independent.

Suppose \(d(u) \geq 2 \) for some \(u \in V - D \). Since \(V - D \) is independent, there exist two vertices \(v, w \) in \(D \) such that \(x = uv \) and \(y = uw \in E(G) \). Then \(\gamma_M(G - x) = \gamma_M(G) \), a contradiction. Hence, \(d(u) \leq 1 \) for all \(u \in V - D \).

Thus \(G = (K_{1,r_1} \cup K_{1,r_2} \cup \ldots \cup K_{1,r_s}) \cup [p - (r_1 + r_2 + \ldots + r_s + s)]K_1 \).

\textbf{Claim:} \(2 \leq (r_1 + r_2 + \ldots + r_s + s) \leq \left\lceil \frac{p}{2} \right\rceil \).

Suppose \((r_1 + \ldots + r_s + s) > \left\lceil \frac{p}{2} \right\rceil \), then \((r_1 + r_2 + \ldots + r_s + s) \geq \left\lceil \frac{p}{2} \right\rceil + 1 \). Let \(D \) be a \(\gamma_M \)-set of \(G \). Let \(x = uv \) be any edge of \(G \) such that \(u \in D \) and \(v \in V - D \).
Then D is also a γ_M-set of $(G-x)$ since $(r_1 + r_2 + \ldots + r(i-1) + r_s + s) \geq \lceil \frac{p}{2} \rceil$. Therefore $\gamma_M(G-x) = \gamma_M(G)$, a contradiction. Hence $2 \leq (r_1 + r_2 + \ldots + r_s + s) \leq \lceil \frac{p}{2} \rceil$.

Therefore $G = (K_{1,r_1} \cup K_{1,r_2} \cup \ldots \cup K_{1,r_s}) \cup [p - (r_1 + r_2 + \ldots + r_s + s)]K_1$, where $2 \leq (r_1 + r_2 + \ldots + r_s + s) \leq \lceil \frac{p}{2} \rceil$.

Conversely, let $G = (K_{1,r_1} \cup K_{1,r_2} \cup \ldots \cup K_{1,r_s}) \cup [p - (r_1 + r_2 + \ldots + r_s + s)]K_1$ where $2 \leq (r_1 + r_2 + \ldots + r_s + s) \leq \lceil \frac{p}{2} \rceil$.

(i.e.), $G = (K_{1,r_1} \cup K_{1,r_2} \cup \ldots \cup K_{1,r_s}) \cup \lambda K_1$ where $\lambda = p - (r_1 + r_2 + \ldots + r_s + s), \ 2 \leq p - \lambda \leq \lceil \frac{p}{2} \rceil$.

In the above graph G, let $V(K_{1,r_i}) = \{v_i, v_{i1}, v_{i2}, \ldots, v_{ir_i}\}, \ 1 \leq i \leq s$ and $V(\lambda K_1) = \{x_1, x_2, \ldots, x_\lambda\}$. Now $D = \{v_i, v_{i1}, v_{i2}, \ldots, v_s, x_1, x_2, \ldots, x_t\}$ is a γ_M-set of G where $t = \lambda - \lceil \frac{\lambda}{2} \rceil$. In general, any γ_M-set of G contains all v_i’s and t vertices from $\{x_1, x_2, \ldots, x_\lambda\}$. Let $x \in E(G)$ and $x = v_iv_{ij}, \ 1 \leq i \leq s, \ 1 \leq j \leq r_i$ in $G-x$, where v_{ij} is an isolate. Moreover D is not a γ_M-set of $G-x$. But $D \cup \{v_{ij}\}$ is a γ_M-set of $G-x$. Therefore $\gamma_M(G-x) = \gamma_M(G)+1$ for all $x \in E(G)$. Hence G is a γ_M-critical graph.

Corollary 4.3 A graph G is γ_M-critical if and only if for every edge $x=uv$ in G and for every minimum majority dominating set D in G, the following three conditions hold:

(i) $u \in D$ and $v \in V-D$ or vice versa.

(ii) If $v \in V-D$ then $N(v) \cap D = \{u\}$ and if $u \in V-D$ then $N(u) \cap D = \{v\}$.

(iii) Suppose $v \in V-D$ then $|N[D] - \{v\}| < \lceil \frac{\lambda}{2} \rceil$.

Theorem 4.4 Let G be a γ_M-critical graph. Then G is not connected.

Theorem 4.5 For any graph G, the following statements are equivalent:

(a) G is $\gamma_M(G)$-critical.
(b) $G = (K_{1,r_1} \cup K_{1,r_2} \cup ... \cup K_{1,r_s}) \cup [p - (r_1 + ... + r_s + s)]K_1$
where $2 \leq (r_1 + ... + r_s + s) \leq \lceil \frac{p}{2} \rceil$.

(c) $\gamma_M(G) = \lceil \frac{p - 2q}{2} \rceil$.

References

Received: October, 2010