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Abstract

For the old question whether there is always a prime in the interval
[kn, (k+1)n] or not, the famous Bertrand’s postulate gave an affirmative
answer for k = 1. It was first proved by P.L. Chebyshev in 1850, and an
elegant elementary proof was given by P. Erdés in 1932 (reproduced in
[2, pp. 171-173]). M. El Bachraoui used elementary techniques to prove
the case k = 2 in 2006 [1]. This paper gives a proof of the case k = 3,
again without using the prime number theorem or any deep analytic
result. In addition we give a lower bound for the number of primes in
the interval [3n,4n], which shows that as n tends to infinity, the number
of primes in the interval [3n,4n] goes to infinity.
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0 Notations

Throughout this paper, we let n run through the positive integers and p run
through the primes. We also let w(n) be the prime counting function, which
counts the number of primes not exceeding n. Further define

f(z) = V2rr*tie Pe
and . .
g(z) = V2ma"tze PeTmrT
1 Lemmas
Lemma 1.1. Ifn > 8, then

m(n) <

SME
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Proof. This is trivial since 1,9 and all even positive integers are not prime.

Lemma 1.2. If x is a positive real number, then

Hp§4x.

p<z

Proof. See [2, pp. 167-168].

Lemma 1.3. We have
g(n) <nl< f(n)
Proof. See [3].

1
Lemma 1.4. For a fized constant ¢ > oL define the function

x+c
h() = L&+
g9(c)g(x)
1
Then for x > 5 hy(x) is increasing.
Proof. It suffices to prove that the function

Hl(x) — (x + C>I+C+%x717%eﬁfﬁl+l

is increasing for z > % Indeed, we have

H(2) = Hy () [ (= L (o)) (= L 4
)= x — n(rz+c) |- ——— s +Inz
! ! 2(x +c¢) 12(x + ¢)? 2x 1\?2 ’
12z + —
12
where Hy(z) > 0. Let
1
Fi(x) = % +1Inz.
1 1 ) . .
As — > 5, it suffices to prove that Fi(x) is increasing,

12(z +¢)? —
12
12

xr + —)
so that

(2(%% +1n(x+c)) — (% +lnx) > 0.

We actually have
1 1 2z-1
Fll(x) - + - = ’

202 x 212

1
which must be non-negative for all z > 5 Therefore, the desired result follows.
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Lemma 1.5. For a fized positive constant ¢, define the function

f()
ho(x) =
0= Sgte )
1 c c
Then when 5 <z < 3 hy(x) > 0; when x = 3 hy(x) = 0 and when
c 1
§<x§c—§, hy(x) < 0.

Proof. It suffices to prove that the function

Hy(x) = x”%(c — x)c_”%eﬁﬂ+12<C—71w>4rl

1
has the following property: when — < z < =, H)(z) < 0; when z = g

@)

Y

[\]
[\]

1
H)(z) = 0 and when g <x<c— o H)(z) > 0. Indeed, we have

Hy(x) = 2°3 (¢ — )¢ T3 T meaT (Fy(x) — Fy(c — 1)),

where

12 1
Fy(z) = ~ g
2(7) = oot T s T e

1
Clearly, for 3 <z<ec,

1 1
.TQH_%(C - x)0—$+%€12z+1*12(c71)+1 > 0.

Next, we actually have

288 20 —1

Fyz) = (12— 11 22

1 1 1
which must be positive for all — < x < ¢. Thus whenever — < z < ¢ — 5

F5(x) is increasing while Fy(c—x) is decreasing, implying that there is at most

1
one value of z with 5 <z<c-— 5 satisfying Fy(z) = Fy(c — x). It is clear
1
that © = g is such a value. It follows that when 3 <z < g, Hj(z) < 0 and

1
When%<x§c—§,H§(x)>0.
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2 Main Results

Now, suppose n > e'2. The product of all primes p € (3n,4n], if any, must

divide (32) Let 3(p) be the power of p in the prime factorization of ( ) Let

4
( ”) = T\, T}
3n

H pﬁ(p)’ Ty = H pﬁ(p) and Ty = H pﬁ(p)

p<+\4n VAn<p<3n 3n<p<dn

where

Bounding each multiplicand in 7} from above by 4n (see [3, p. 24]) and applying
Lemma 1.1,

Ty < (4n)™V) < (4n)*3* = (4n)V7.

n) in [3, p. 24] manifests, for

Consider T,. As the prime factorization of (
J

dn <p < 3n, B(p) <1
Let > 0 and let [z] be the greatest integer less than or equal to x. Define
{z} =  — [z]. Let r and s be real numbers satisfying s > r > 1. Observe
that number of integers in the interval (s — r, s] is [s] — [s — ], which is [r] if
{s} > {r} and [r] + 1 if {s} < {r}. Let N be the set of all positive integers.
We define H
k

U= )

€(0,7INN
where §(r, s) = 1 if {s} > {r} and 0(r,s) = [s —r] + 1 if {s} < {r}. In both
cases, d(r, s) < s.

St A= (35— Y 0 (Y (7Y

We have the following observations:

° H p < H p < 4% (by Lemma 1.2)

Vian<p<E p<%

M
If —<p< —. th
R e T R

n 3
2p<§<3p<8p<7n<9p<11p§2n.

Hence H p divides B.

n 2n
6<P=1y
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2n 4n
i << 2 gn
11 <P =gy then

n 4n
p<§<2p<5p<n<6p<7p§?.

Hence H p divides A.

2n 4an
11 <P<51

4
If n<p§%,then

21
op <n < 6p < 15p < 3n < 16p < 20p < 4n < 21p.

Hence f(p) = 0.

2
If%<p§?n,then

n 4dn
p<§<2p<4p<n<5p<6p§?.

Hence H p divides A.

n 2n
s<r<%

2n 3n
If —<p<—. th
g ~P=qgten

dp<n<dp<l1l3p<3dIn<ldp < 17p < 4n < 18p.

Hence 3(p) = 0.

H p divides C.

3n 4an
13 <P<77

4in n
If —<p<—,th
17 S P=p e
dp <n <dp < 12p < 3n < 13p < 16p < 4n < 17p.

Hence ((p) = 0.
n 4dn
If — < —,th
g ~Psp e
n 4dn
p<§<2p<3p<n<4p<5p§?.

Hence H p divides A.

n 4n
1<P=73

1875



1876

H p divides D.

4n 2n
15 <P<T

2n 3n
If — <p<—. th
7 SP=qp e

3p<n<4dp <10p <3n < 1lp < 13p < 4n < 14p.

Hence B(p) = 0.

3n n
If — < —. th
10<p_37 en

n 3n
p<§<2p<4p<7<5p<6p§2n.

Hence H p divides B.

3n n
T0<P<3

4
If%<p§?n,then

n 4n
—<p<2p<n<3IPp< —.
3 3
Hence H p divides A.
F<p<
4
If§n<p§g,then
2p<n<3Ip<bp <3In<Tp<8 <4dn < 9.

Hence 3(p) = 0.

2
Ifg<p§?n,then
n 3n
—<p<2p<—<3p<2n.
2 2
Hence H p divides B.

n 2n
2<P=F

2 3
If?n<pgzn,then

p<n<2p<4dp<3n<dp <4n < 6p.

Hence (p) = 0.

A. Loo
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3 4
Ifzn<p§?n,then

n 3n
— — < 2p < 2n.
2<p<2<p_n

Hence H p divides B.

Fps
4in
oIf?<p§n,then
p<n<2p<3p<3In<dp<4dn<dp.

Hence f(p) = 0.

° H p divides A.

n<p< g
4
° If?n<p§37”,then
n<p<2p<3n<in < 3p.

Hence B(p) = 0.

° H p divides B.

3n <p<on
o If 2n < p < 3n, then
n<p<3n<in <2p.
Hence ((p) = 0.
Therefore, to summarize, we get
T, < 45 ABCD.

Note that by Lemma 1.3,

(;lZ) - (z%v);'

6m™n



B= {33}2} = 2”([33}2}) = 2n o [B_n} 3n/2] + 1
2
. 3 *31 | f(2n)
% (- ()
< (6n +4) - g<?)£(<252 - 3_) (by Lemma 1.5)
12n+8 o _ 1 _ . (16

3_n
oo o) ) {iﬂ;} (o
17 13

3 4dn
<4n £+1 ‘ f([ﬁ})

R B
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f 4n
4n  5ln + 221 17

<17 Th—21 /3n in  3n
IN13)9\17 13
3

dn 5ln+221 26 a1 s o L /13\ 84\ 1\"
= . . e48n~ 36n+13  12n+221 | 291221 [ — —
17 n—221 6mn 3 17 ’

(by Lemmas 1.4 and 1.5)

and
4n
—|+1
2n )7 2n [ [2n/7] 2n { 15] [2n/7]
D: <— = ——_—
dn/15f = 7 \[4n/15] 7 [2n]  [4n] \[4n/15] +1
7 15
4n 2n
ottt d (M)
ST n Il R B e
7 15 I\ |15 I\ |7 15
()
2n 28n + 105 7
—_ . L 14 1.
T 4_n 2_n_4_n (by Lemmas and 1.5)
N1 )9\ 7 " 15
2 4 2
4n? + 15n 15 7 5 35 105\ 5 /15\ 5 /2\ 7\ "
g . 62477. 16n+5 8n+35 R J— — .
2n — 105 2mn 2 4 7
Therefore

Te — In\ 1 - 4n 1
7 \8n) Ty 7 \3n) (4n)vP45 ABCD
3 _3
N V/3me o A (). " 2(n — 221)(2n — 105)

4160 (3n +2)(3n + 13)(4n + 15)
3 _3 9

V3 eEM”(Zln)_\/ﬁ L

4160 (4n)(4n)(5n)

V32

= ef M™(4n)~Vrn~
332800

>

Njot
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where
1 1 1 1 1 1 1 1
= = —— - ——+
48n+1 36n 12n 16n 12n+1 4n+1 24n  18n+1
n 1 17 n 13 n 221 7 n 5 n 35
on+1 48n 36n+13 12n+221 24n  16n+5 8n+35
and
9256 (1\? 33/ 1 \2=/ 3\ 17\ 7/ 2 \105/ 4\ /7\7
2 5 1
M = - — — — — — — — ] 476 > 1.
Z6) ok(m) " (3) (5) (%) () G) e
Obviously
lim ¥ = 1.

Moreover, we have
5
ln(M”(4n)_‘/ﬁn_%) =nlnM — y/nin(4n) — 3 Inn.

When n tends to infinity, it is easy to check that /nIn(4n) = o(n) and Inn =
o(n). Thus, In (M"(4n)‘/ﬁn3) goes to infinity and so does M™(4n)~V"n 3.

It follows that

n—oo

which means that there exists some ng such that for all n > ng, T3 > 1.
In fact, it is routine to check (using WolframAlpha for instance) that when

3
12 V372

n > e'?, 3328006EM”(4n)_\/ﬁn’% is always greater than 1 and so T3 > 1.

Direct verification, on the other hand, ensures that there is always a prime in
the interval [3n,4n] for all positive integers n < e'2. Therefore, our desired
result ensues:

Theorem 2.1. For every positive integer n, there is a prime in the interval
[3n,4n]. Plainly, it follows that when n > 2, there is always a prime in the
interval (3n,4n).

Corollary 2.2. Ifn > 3, then there is a prime in the interval (n,

Proof. If n = 0 (mod 3), then the result follows directly from The-
orem 2.1. If n (mod 3), then by Theorem 2.1 there exists a prime

1
p e (n + 2 )) If n = 2 (mod 3), then by Theorem 2.1 there ex-
+1,

n—i—l)

+
3
ists a prime p € (
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Next, we establish a lower bound for the number of primes in the interval
[3n,4n]. Bounding each prime in the interval from above by 4n, we have the
following

Theorem 2.3. Forn >4, the number of primes in the interval (3n,4n) is
at least

3
log4n( Vi eEM"(4n)ﬁn3).

332800
Note that
3
log,,, V3n e M (4n) V03
332800
5 32
~3 Inn+nlnM — /nin(4n) + E + 1n(3\?{2_§020>
N Inn+In4
\/gﬂ'% 5
In M — In(4 E+1 —
nln Vvnln(4n) + +n<332800)+2 5
N Inn+1n4 2
> vn )5
2Inn 2

Now check that Lim In(4n)

n—00 \/ﬁ

= 0. Moreover, it is obvious that

. n
lim — = 4o00.
n— 00 lnn

Thus we have the following

Theorem 2.4. As n tends to infinity, the number of primes in the interval
[3n,4n] goes to infinity. In other words, for every positive integer m, there
exists a positive integer L such that for all n > L, there are at least m primes
in the interval [3n,4n].
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