On the \overline{M}-Integral Curves and \overline{M}-Geodesic Sprays in Minkowski Space

Mustafa ÇALIŞKAN
Gazi University Faculty of Sciences
Department of Mathematics Tekinokullar Ankara, Turkey
mustafacaliskan@gazi.edu.tr

Evren ERGÜN
Ondokuz Mayıs University Faculty of Arts and Sciences
Department of Mathematics Kurupelit Samsun, Turkey
eergun@omu.edu.tr

Abstract
In this study \overline{M}-vector field Z on M, \overline{M}-integral curve of Z, and \overline{M}-geodesic spray concepts are given, where \overline{M} is a Lorentzian manifold in Minkowski space and M is a hypersurface of \overline{M}. Then, the following main theorem related with these concepts is given and proved: The natural lift π of the curve α is an \overline{M}-integral curve of \overline{M}-geodesic spray Z if and only if α is an \overline{M}-geodesic on M.

Mathematics Subject Classification: 57R25, 53B35, 58A05, 53C50

Keywords: \overline{M}-vector field, \overline{M}-integral curve, \overline{M}-geodesic spray

1 On The \overline{M}-Integral Curves and \overline{M}-Geodesic Sprays in Minkowski Space

Let \overline{M} be a Lorentzian manifold and M be a Lorentzian hypersurface of \overline{M}. \overline{D} being the Levi-Civita connection on \overline{M}, S being Weingarten map of M and N being unit normal vector field on M we have the Gauss Equation given by

$$\overline{D}_XY = D_XY + \varepsilon g(S(X), Y)N \tag{1}$$

where D is the Levi-Civita connection on M.
Definition 1 Let Z be a vector field on \mathcal{M}. Z is called an \mathcal{M}-vector field on M if Z is a mapping which attaches to each point P in M, a vector Z_P in T_PM, that is

$$Z : M \longrightarrow T_PM.$$

Any \mathcal{M}-vector field Z can be decomposed into its tangential and normal components given by

$$Z = Z_t + Z_n$$

where Z_t is a tangent vector field on M and Z_n is a vector field on \mathcal{M} defined on M which is normal to M at every point. We have

$$Z = Z_t + \lambda N$$

where $\lambda \in C^\infty (M, \mathbb{R})$.

Let α be a curve passing through a point P on M and T denote the tangent vector field of α on M. Covariant derivative of Z in the direction T gives

$$\overline{D}_TZ = \overline{D}_TZ_t + \overline{D}_T\lambda N$$

and then

$$\overline{D}_TZ = D_TZ_t + \varepsilon g (S (T), Z_t) N + D_T\lambda N + \varepsilon g (S (T), \lambda N) N.$$

After some calculations we have

$$\overline{D}_TZ = \tan \overline{D}_TZ + \text{nor} \overline{D}_TZ$$

(3)

where

$$\overline{D}_TZ = D_TZ_t - \lambda S (T), \text{nor} \overline{D}_TZ = \left(\frac{d\lambda}{dt} + \varepsilon g (S (T), Z_t) \right) N.$$

(4)

Definition 2 The vector \overline{D}_TZ, $\tan \overline{D}_TZ$, and $\text{nor} \overline{D}_TZ$ in (3) are called the absolute curvature vector, geodesic curvature vector, and normal curvature vector of \mathcal{M}-vector field Z with respect to α, respectively and the corresponding magnitudes on M are called the absolute curvature, geodesic curvature and normal curvature of the \mathcal{M}-vector field Z with respect to α. Hence
\[
\overline{K}_{ZA} = \|D_T Z\| \iff D_T Z = \overline{K}_{ZA} \overline{N}_A
\]

\[K_{ZG} = \|\tan D_T Z\| \iff \tan D_T Z = K_{ZG} X \tag{5}\]

\[K_{ZN} = \|\text{nor } D_T Z\| \iff \text{nor } D_T Z = K_{ZN} N \]

where \(\overline{N}_A\) is a unit vector field on \(\overline{M}\), \(X\) is a unit vector field on \(M\), \(\overline{K}_{ZA}\), \(K_{ZG}\) and \(K_{ZN}\) are absolute curvature, geodesic curvature, and normal curvature respectively.

Definition 3 Let \(M\) be a Lorentzian hypersurface of \(\overline{M}\), \(D\) be the connection on \(M\) and \(\overline{D}\) be the connection on \(\overline{M}\). If \(\tan D_T Z = 0\) the curve \(\alpha\) is called \(\overline{M}\)-geodesic on \(M\), where \(T\) is the unit tangent vector of the curve \(\alpha : I \to M\).

Definition 4 A vector \(X \in T_PM\) is called as an asymptotic vector of \(Z\) if

\[
\left(\frac{d\lambda}{dt} + \varepsilon g (S (X), Z_t) \right) \left(\frac{d\lambda}{dt} + \varepsilon g (S (X), Z_t) \right) = 0. \tag{6}\]

The curve \(\alpha\) on \(M\) is called the asymptotic curve of \(Z\) if the tangent vector field of \(\alpha\) coincides with the asymptotic vector field of \(Z\), that is,

\[
\left(\frac{d\lambda}{dt} + \varepsilon g (S (T), Z_t) \right) \left(\frac{d\lambda}{dt} + \varepsilon g (S (T), Z_t) \right) = 0,
\]

where \(T = \frac{d\alpha}{dt}\).

Definition 5 \(X, Y \in T_PM\) are called conjugate vectors of \(Z\) if

\[
\left(\frac{d\lambda}{dt} + \varepsilon g (S (X), Z_t) \right) \left(\frac{d\lambda}{dt} + \varepsilon g (S (Y), Z_t) \right) = 0. \tag{7}\]

\(X\) is called a self-conjugate vector field of \(Z\) if

\[
\left(\frac{d\lambda}{dt} + \varepsilon g (S (X), Z_t) \right) \left(\frac{d\lambda}{dt} + \varepsilon g (S (X), Z_t) \right) = 0. \tag{8}\]
Using **Definition 5** we have obtained the results:

Corollary 1.1 Tangent vector field of every asymptotic curve of Z is a self-conjugate vector field of Z.

Corollary 1.2 If X is an asymptotic vector field of Z then for the value of λ in (2) we have

$$\lambda = - \int \varepsilon g(S(X), Z_t) \, dt. \quad (9)$$

Definition 6 For an \overline{M}-vector field $Z = Z_t + Z_n$, a curve $\alpha \subset M$ is called an \overline{M}-integral curve of Z if

$$Z_t (\alpha(t)) = \frac{d\alpha}{dt} |_{\alpha(t)}. \quad (10)$$

Definition 7 Let $\alpha \subset M$ be a differentiable curve. The curve $\overline{\alpha} : I \rightarrow TM$ given by

$$\overline{\alpha}(t) = \dot{\alpha}(t) |_{\alpha(t)} \quad (11)$$

is called the natural lift of α on the manifold TM.

Definition 8 A \overline{M}-vector field Z is called an \overline{M}-geodesic spray if for $V \in TM$

$$Z_t (V) = \left(\frac{d\lambda}{dt} + \varepsilon g(S(V), V) \right) N. \quad (12)$$

Theorem 1.3 The natural lift $\overline{\alpha}$ of the curve α is an \overline{M}-integral curve of \overline{M}-geodesic spray Z if and only if α is an \overline{M}-geodesic on M.

Proof. Let $\overline{\alpha}$ be an \overline{M}-integral curve of the \overline{M}-geodesic spray Z. Then

$$Z_t (\overline{\alpha}) = \frac{d\overline{\alpha}}{dt}. \quad (13)$$

Since Z is a geodesic spray on $T\overline{M}$ (\overline{M}-geodesic spray) we have

$$Z_t (\overline{\alpha}) = \left(\frac{d\lambda}{dt} + \varepsilon g(S(\overline{\alpha}), \overline{\alpha}) \right) N. \quad (14)$$

Joining (11), (13) and (14) we obtain

$$\frac{d\overline{\alpha}}{dt} = \left(\frac{d\lambda}{dt} + \varepsilon g \left(S \left(\dot{\alpha}, \dot{\alpha} \right) \right) \right) N.$$
On the other hand, since
\[
\frac{d\alpha}{dt} = \frac{d\dot{\alpha}}{dt} = \mathcal{D}_\alpha \dot{\alpha},
\]
using (3) we have
\[
\mathcal{D}_\alpha \dot{\alpha} - \lambda S \left(\dot{\alpha} \right) = 0.
\]
This shows that \(\alpha \) is an \(\vec{M} \)-geodesic on \(M \) which is to be shown.

Conversely, if \(\alpha \) is an \(\vec{M} \)-geodesic on \(M \) then it is obvious that the natural lift \(\vec{\sigma} \) is an \(\vec{M} \)-integral curve of the \(\vec{M} \)-geodesic spray \(Z \).

References

[4] N.S. Agashe, Curve associated with an \(\vec{M} \)-vector field on a hypersurface \(M \) of a Riemannian \(\vec{M} \), Tensor, N.S., 28 (1974), 117-242

Received: April, 2011