M-Projective Curvature Tensor on Kaehler Manifold

Musa Jawarneh and Mohammad Tashtoush

AL-Balqa' Applied University, AL-Huson University College
Department of Basic Sciences, P. O. Box 50, AL-Huson 21510
Musa_jawarneh@yahoo.com mhmdmath@hotmail.com

Abstract

Properties of M – projective curvature tensor been studied on Kaehler manifold with respect to recurrent and symmetric properties.

1. Introduction

We consider a $2n$ – dimensional Kaehler manifold M_{2n} with a vector valued linear function F and a Riemannian metric g which satisfies the following conditions:

1.1) $\bar{X} = -I_{2n}$, where $F(X) = \bar{X}$.
1.2) $g(\bar{X}, \bar{Y}) = g(X, Y)$.
1.3) $F(X, T) = g(\bar{X}, Y)$.
1.4) $(D_{a} F)Y = 0$, where D is the Riemannian connection.

If we define [1]

1.5) a) $H(Y, Z) = -\frac{1}{2} \bar{C} \bar{R}(Y, Z)$, b) $H(\bar{Y}, Z) = -H(Y, \bar{Z})$

Then we have

1.6) a) $H(Y, Z) = S(Y, Z)$, b) $H(\bar{Y}, Z) = -H(Y, \bar{Z}) = S(Y, Z)$

where R and S are the so called Riemannian curvature tensor and the Ricci tensor respectively.
The projective curvature tensor W, Conformal curvature tensor C, Conharmonic curvature tensor L, Conircular curvature tensor V, H – projective curvature tensor P, H – conharmonic curvature tensor T, H – Concircular curvature tensor K, Conharmonic* curvature tensor T^*, H – conformal (Bochner) curvature tensor B and the conharmonic curvature tensor C^* are given on Kaehler manifold respectively by;

1.7) a) $W(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n-1)}[S(\gamma',Z)X - S(X,Z)\gamma']$

b) $C(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n-1)}[S(\gamma',Z)X - S(X,Z)\gamma'] - g(\gamma',Z)RX + \frac{r}{2(2n-1)}[g(\gamma',Z)X - g(X,Z)\gamma']$

c) $L(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n-1)}[S(\gamma',Z)X - S(X,Z)\gamma'] + g(\gamma',Z)RX$

d) $V(X,Y,Z) = R(X,Y,Z) - \frac{r}{2(2n-1)}[g(\gamma',Z)X - g(X,Z)\gamma']$

e) $P(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n+2)}[S(\gamma',Z)X - S(X,Z)\gamma'] + S(\gamma',Z)\bar{X}$

f) $T(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n+2)}[S(\gamma',Z)X - S(X,Z)\gamma'] - g(\gamma',Z)RX + \frac{1}{2}F(\gamma',Z)RX$

g) $K(X,Y,Z) = R(X,Y,Z) - \frac{r}{4n+1}[g(\gamma',Z)X - g(X,Z)\gamma'] + \frac{1}{2}F(\gamma',Z)\bar{X}$

h) $T^*(X,Y,Z) = R(X,Y,Z) + \frac{r}{2(2n-1)(2n-1)}[g(\gamma',Z)X - g(X,Z)\gamma']$

i) $B(X,Y,Z) = R(X,Y,Z) - \frac{1}{2(2n+2)}[S(\gamma',Z)X - S(X,Z)\gamma'] - g(\gamma',Z)RX + S(\gamma',\bar{Z})\gamma' - S(\gamma',Z)\bar{X} - \frac{1}{2}F(\gamma',Z)RX$

$+ \frac{1}{2}F(\gamma',Z)\bar{X} - 2\frac{1}{2}F(\gamma',Z)R\bar{X} + 2S(X,\gamma',\bar{Z})$
M-projective curvature tensor on Kaehler manifold

\[
\frac{r}{4(n+1)(n+2)}\left[g(X,Z)\overline{g} - g(Y,Z)X - \frac{1}{2(n-1)}[g(Y,Z)RX - g(X,Z)RY] \right] + \frac{r}{2(n-1)(2n-1)}[g(Y,Z)X - g(X,Z)\overline{Y}] \\
\]

where \(r \) is the scalar curvature tensor.

A Kaehler manifold is said to be recurrent if for a non-zero recurrence vector \(v \), that satisfies:

\[(D_v)R (X,Y,Z) = v (U)R (X,Y,Z) \]

From which we have:

\[(D_v)S (Y,Z) = v (U)S (Y,Z) \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

From which we have:

\[(D_v)S (Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]

Also on a Kaehler manifold \(\overline{1}H \) is said to be recurrent if it satisfies:

\[(D_v)\overline{1}H (X,Y) = v (U) \overline{1}H (X,Y) \]

A Kaehler manifold is said to be symmetric if it satisfies:

\[(D_v)R (X,Y,Z) = 0 \]
2. M-projective recurrent Kaehler manifold

A Kaehler manifold is said to be M – projective recurrent if it satisfies.

2.1) \((D_u M)(X,Y,Z) = v(U)M(X,Y,Z)\)

For a non zero recurrence vector v. From 1.17 we have;

2.2) \((D_u M)(X,Y,Z) = v(U)M(X,Y,Z) = (D_u R)(X,Y,Z)\)

\[-v(U)R(X,Y,Z) - \frac{1}{4(n-1)}[((D_v S)(Y,Z) - v(U)S(Y,Z))X\]

\[-v(U)S(Y,Z)X + ((D_v S)(X,Z) - v(U)S(X,Z)Y]\]

If the manifold is M – projective recurrent we have;

2.3) \((D_u R)(X,Y,Z) = v(U)R(X,Y,Z) = \frac{1}{4(n-1)}[((D_v S)(Y,Z)\]

\[-v(U)S(Y,Z)X - ((D_v S)(X,Z) - v(U)S(X,Z)Y\]

\[-((D_v S)(Y,Z) - v(U)S(Y,Z))X + ((D_v S)(X,Z)\]

\[-v(U)S(X,Z)Y] = 0\]

Contracting this equation with respect to X we get;

2.4) \[\frac{n-2}{2(n-1)}((D_u S)(Y,Z) - v(U)S(Y,Z) = 0\]

Hence we can state:

Theorem 2.1: A M – projective recurrent Kaehler manifold $M_{2n}, n > 2$ is Ricci recurrent.

Theorem 2.2: A Kaehler manifold $M_{2n}, n > 2$ M – projective current if and only if it is recurrent.

Theorem 2.3: A Flat Kaehler manifold is M – projective recurrent if any only if it is Ricci recurrent.

Theorem 2.4: If on a Kaehler manifold two of the following hold, the third also hold.

a. It is M – projective recurrent manifold.

b. It is recurrent manifold.

c. It is Ricci recurrent manifold.

Now barring Z in 2.4 and using 1.6.a we get:

2.5) \[\frac{n-2}{2(n-1)}((D_u)^1H(Y,Z) - v(U)^1H(Y,Z) = 0\]
Hence, we have;

Theorem 2.5: On an M–projective recurrent Kaehler manifold M_{2n}, $n > 2$, H is recurrent.

From 1.17 and 1.7.d we have;

$$2.6) M(X,Y,Z) = V(X,Y,Z) - \frac{1}{4(n-1)}[S(Y,Z)X - S(Y',Z)Y' - S(Y',Z')X']$$

$$+ S(X,Z)\bar{Y} + \frac{r}{2n(2n-1)}[g(Y,Z)X - g(X,Z)Y']$$

From which we have:

$$2.7) (D_vM)(X,Y,Z) - v(U)M(X,Y,Z) = (D_vV)(X,Y,Z)$$

$$- v(U)W(X,Y,Z) - \frac{1}{4(n-1)}[(D_vS)(Y,Z) - v(U)S(Y,Z)]X$$

$$- ((D_vS)(X,Z) - v(U)S(X,Z))Y' - ((D_vS)(Y,Z) - v(U)S(Y,Z))\bar{X}$$

$$+ ((D_vS)(X,Z) - v(U)S(X,Z))\bar{Y}' + \frac{(D_vr - v(U)r)}{2n(2n-1)}[g(Y,Z)X - g(X,Z)Y']$$

Hence, we can state:

Theorem 2.6: On a Kaehler manifold if any two of the following hold, the third also hold:

a. It is M–projective recurrent manifold.

b. It is Concircular recurrent manifold.

c. It is a Ricci recurrent manifold.

Similarly we can prove nine theorems analog to theorem 2.6 by simply replacing Concircular in part b of the theorem by projective, conformal, conharmonic, H–projective, H–conformal, H–conharmonic, H–Concircular, Conharmonic C^*, and Conformal*.

Now from 1.7.j we can have:

$$2.8) (D_vC^*)(X,Y,Z) - v(U)C^*(X,Y,Z) = (D_vR)(X,Y,Z)$$

$$- v(U)R(X,Y,Z) - \frac{1}{2(n-1)}[g(Y,Z)R(X,Y)]$$

$$- v(U)RX - g(X,Z)(D_vR)Y - v(U)RY]$$

$$+ \frac{(D_vr - v(U)r)}{2n(2n-1)}[g(Y,Z)X - g(X,Z)Y']$$

If the manifold is Conformal* recurrent we have;
\[(D_u R)(X , Y , Z) - v (U) R (X , Y , Z) \]
\[
- \frac{1}{2(n - 1)} [g (Y , Z) ((D_u R)X - v (U) RX)] \\
- g (X , Z) ((D_u R)Y - v (U) RY) \\
+ \frac{(D_u r - v (U) r)}{2(n - 1)(2n - 1)} [g (Y , Z)X - g (X , Z)Y] = 0
\]

Contracting this equation with respect to \(X \) we get:

\[2.10 \]
\[
\frac{2(n - 1)}{2n - 2} ((D_u S)(Y , Z) - v (U) S(Y , Z) = 0
\]

Hence a Conformal* recurrent Kaehlar manifold is Ricci recurrent.

But from 1.17 and 1.7.j we have;

\[2.11 \]
\[
M (X , Y , Z) = C * (X , Y , Z) - \frac{1}{4(n - 1)} [S (Y , Z)X] \\
- S (X , Z)Y + S (Y , Z)X] - \frac{1}{2(n - 1)} [g (Y , Z)RX \\
- g (X , Z)RY] + \frac{r}{2(n - 1)(2n - 1)} [g (Y , Z)X - g (X , Z)Y]
\]

From which we can get;

\[2.12 \]
\[
(D_u M)(X , Y , Z) - v (U) M (X , Y , Z) = (D_u C *)(X , Y , Z) \\
- v (U) C *(X , Y , Z) - \frac{1}{4(n - 1)} [((D_u S)(Y , Z) - v (U) S (Y , Z))X \\
- ((D_u S)(X , Z) - v (U) S (X , Z)Y)] - ((D_u S)(Y , Z) - v (U) S (Y , Z))Y] \\
- ((D_u S)(X , Z) - v (U) S (X , Z)Y)] - \frac{1}{2(n - 1)} [g (Y , Z)((D_u R)X \\
- g (X , Z)Y].
\]

Therefore, we have in consequence of theorem 2.1 and equations 2.10 & 2.9.

Theorem 2.7: A Kaehler manifold \(M_{2n} , n > 2 \) is \(M \) – projective recurrent if and only if it is Conformal * recurrent.

Now from 1.7.d we have:

\[2.13 \]
\[
(D_v Y)(X , Y , Z) - v (U) Y (X , Y , Z) = (D_v R)(X , Y , Z) \\
- v (U) R (X , Y , Z) - \frac{(D_v r - v (U) r)}{2n(2n - 1)} [g (Y , Z)X - g (X , Z)Y]
\]
If the manifold Concircular recurrent we have:

2.14) \((D_v R)(X, Y, Z) - v(U) R(X, Y, Z) = \frac{(D_v r - v(U)r)}{2n(2n - 1)} [g(Y, Z) X - g(X, Z) Y] \)

Contracting this equation with respect to \(X\) we obtain;

2.15) \((D_v S) Y, Z) - v(U) S(Y, Z) = \frac{(D_v r - v(U)r)}{2n} g(Y, Z) \)

If \(r = 0\), we have; \((D_v S) Y, Z) - v(U) S(Y, Z) = 0\), which means that the manifold is Ricci-recurrent. But from 1.17 and 1.7.d we can have:

2.16) \(M(X, Y, Z) = V(X, Y, Z) - \frac{1}{4(n - 1)} [S(Y, Z) X - S(X, Z) Y - S(Y, Z) X + S(X, Z) Y] + \frac{r}{2n(2n - 1)} [g(Y, Z) X - g(X, Z) Y] \)

Form which we can get:

2.17) \((D_v M)(X, Y, Z) - v(U) M(X, Y, Z) = (D_v V)(X, Y, Z) - v(U) V(X, Y, Z) \)

Hence, we have:

Theorem 2.8: A necessary and sufficient condition for a Kaehler manifold \(M_2, n > 2\) of zero scalar curvature to be \(M\)–projective recurrent is that it is Concircular recurrent manifold.

Similarly we can prove:

Theorem 2.9: A necessary and sufficient condition for a Kaehler manifold \(M_2, n > 2\) of zero scalar curvature to be \(M\)–projective recurrent is that it is \(H\)–Concircular manifold.

Theorem 2.10: A necessary and sufficient condition for a Kaehler manifold \(M_2, n > 2\) of zero for curvature to be \(M\)–projective recurrent is that it is Conharmonic* recurrent manifold.

3. M-projective symmetric Kaehler manifold

A Kaehler manifold is said to be \(M\)–projective symmetric if it satisfies.
3.1) \((D_uM)(X,Y,Z)=0\).

It is clear that every symmetric Kaehler manifold is \(M\)–projective symmetric.

From 1.17 and 3.1 we have if the manifold is \(M\)–projective symmetric,

\[(D_uR)(X,Y,Z) - \frac{1}{4(n-1)}[(D_uS)(Y,Z)X - (D_uS)(X,Z)Y - (D_uS)(X,Z)Y^\perp] \]

\[+ (D_uS)(X,Z)Y^\perp = 0 \]

Contracting this equation with respect to \(X\) we get;

3.3) \(\frac{n-2}{2(n-1)}(D_uS)(Y,Z) = 0\).

If \(n \neq 2\), then the manifold is Ricci-Symmetric. That is, equations 1.13 and 1.14 holds. Hence, we have that,

Theorem 3.1: A necessary and sufficient condition for a \(M\)–projective symmetric Kaehler manifold to be symmetric is that it is Ricci-symmetric.

Theorem 3.2: An \(M\)–projective symmetric Kaehler manifold, \(M_{2n}\), \(n > 2\) is Ricci-symmetric.

Theorem 3.3: Every \(M\)–projective symmetric Kaehler manifold \(M_{2n}\), \(n > 2\) is symmetric.

Theorem 3.4: On \(M\)–projective symmetric Kaehler manifold \(M_{2n}\), \(n > 2\), the scalar curvature is constant.

Now using Bianchi identify on 3.2 we have:

3.4) \((D_uR)(Y,X,Z) - (D_uR)(U,X,Z) - \frac{1}{4(n-1)}[(D_uS)(Y,Z)X - (D_uS)(X,Z)Y]

\[- (D_uS)(Y,Z)X + (D_uS)(X,Z)Y^\perp] = 0 \]

Contracting this equation with respect to \(U\) we get;

3.5) \(\frac{1}{4(n-1)}[(4n-5)(D_uS)(Y,Z) - (D_uS)(Y,Z)) + (D_{\chi}^{-1}H)(Y,Z) -

\[(D_{\chi}^{-1}H)(X,Z))] = 0 \]

Hence we can state:

Theorem 3.5: On an \(M\)–projective symmetric Kaehler manifold we have equation 3.5.

Theorem 3.6: On an \(M\)–projective symmetric Kaehler manifold, the first covariant derivative of the Ricci tensor is symmetric if and only if

\((D_{\chi}^{-1}H)(Y,Z) = (D_{\chi}^{-1}H)(X,Z)\)

Theorem 3.7: Every Einstein \(M\)–Projective symmetric Kaehler manifold is symmetric.
M-projective curvature tensor on Kaehler manifold

Proof: For an Einstein manifold the scalar curvature is constant and the Ricci tensor is given by:

\[S(X,Y) = \frac{r}{2n} g(X,Y). \]

Therefore, we have; \((D_v S)(X,Y) = 0\). Hence the statement follows from 3.2.

Theorem 3.8: Every recurrent \(M\) – projective symmetric Kaehler manifold is \(M\) – protectively flat.

The proof is obvious.

Theorem 3.9: An \(M\) – projective symmetric Kaehler manifold is Ricci-recurrent if and only if;

\[(D_v R)(X,Y,Z) + v(U)[M(X,Y,Z) - R(X,Y,Z)] = 0 \]

Proof: If the manifold is Ricci recurrent then we have in consequence of 1.9 and 3.2.

\[(D_v R)(X,Y,Z) = \frac{v(U)}{4(n-1)}[S(Y,Z)X - S(X,Z)Y - S(Y,Z)X + S(X,Z)Y] = 0 \]

Using 1.17 and 3.8 we get 3.7.

Conversely, if 3.7 is true then using it on 3.2 we get;

\[(D_v S)(Y,Z) = v(U)S(Y,Z). \]

Hence we have the statement.

Theorem 3.10: A recurrent Einstein \(M\) – projective symmetric space is flat.

Proof: For an Einstein manifold we have:

\[(D_v M)(X,Y,Z) = (D_v R)(X,Y,Z). \]

If the manifold is \(M\) – projective recurrent we have for a non-zero recurrence vector \(v\).

\[(D_v M)(X,Y,Z) = v(U)M(X,Y,Z). \]

By theorem 2.9 we have;

\[(D_v M)(X,Y,Z) = v(U)R(X,Y,Z). \]

Since the manifold is \(M\)-projective symmetric we have; \(v(U)R(X,Y,Z) = 0\). Hence we have the statement, since \(v\) non-zero.

Now differentiating 2.16 covariant we get;

\[(D_u M)(X,Y,Z) = (D_u V)(X,Y,Z) - \frac{1}{4(n-1)}[(D_v S)(Y,Z)X - (D_v S)(X,Z)Y]
- (D_v S)(Y,Z)X - (D_v S)(X,Z)Y]
- \left[\frac{D_v r}{2n(2n-1)}[g(Y,Z)X - g(X,Z)]\right]. \]

Therefore we can have in consequence of 1.13, 1.14, 1.16 and 3.1.

Theorem 3.11: On a Kaehler manifold if any two of the following hold, the third also hold.

a. It is \(M\) – projective symmetric manifold.

b. It is Concircular symmetric manifold.

c. It is Ricci symmetric manifold.
Similarly we can prove nine theorems analog to theorem 3.10 by simply replacing Concircular in part b of the theorem by projective, conformal, $H -$ conharmonic, $H -$ Concircular, Conharmonic*, and Conformal*.

Theorem 3.12: If an $M -$ projective symmetric Kaehler manifold is Concircular recurrent and Ricci- recurrent under the same recurrence Vector, then it is $M -$ protectively flat.

Proof: Using the facts given in theorem 2.10 we get;

\[
V(X, Y, Z) - \frac{1}{4(n-1)}[S(Y', Z)X - S(X, Z)Y' - S(Y', Z)X + S(X, Z)Y']
\]

\[
+ \frac{r}{2n(2n-1)}[g(Y', Z)X - g(X, Z)Y'] = 0
\]

Hence the result follows from 3.16.

Theorem 3.13: If a Kaehler manifold is Concircular symmetric, $M -$ projective recurrent and Ricci-recurrent under the same recurrent vector, then it is Concircular flat.

The proof is similar to the proof of the above theorem.

Theorem 3.14: If an $M -$ projective symmetric Kaehler manifold is Concircular symmetric and Ricci-recurrent under the same recurrent vector, then the $M -$ projective and the Concircular tensors coincide.

Proof: Using the fact given in theorem 3.10 we get:

\[
- \frac{1}{4(n-1)}[S(Y', Z)X - S(X, Z)Y' - S(Y', Z)X + S(X, Z)Y']
\]

\[
+ \frac{r}{2n(2n-1)}[h(Y', Z)X - g(X, Z)Y'] = 0
\]

Hence the statement follows from 3.9.

Similarly we can prove three theorem analog to the above three theorems by simply replacing Concircular in each one by projective, conformal, conharmonic*, $H -$ projective, $H -$ conformal, $H -$ Conharmonic, $H -$ Concircular, Conharmonic*, and Conformal*.

References

Received: March, 2011