Stability of Quadratic Functional Equation in RN-Spaces

Hassan Azadi Kenary

Department of Mathematics, College of Sciences
Yasouj University, Yasouj 75914-353, Iran
azadi@mail.yu.ac.ir

Jung Rye Lee

Department of Mathematics, Daejin University
Kyeonggi 487-711, Republic of Korea
jrlee@daejin.ac.kr

Dong Yun Shin

Department of Mathematics, University of Seoul
Seoul 130-743, Republic of Korea
dyshin@uos.ac.kr

Afshin Erami

Department of Mathematics, Marvdasht Branch
Islamic Azad University, Marvdasht, Iran
eramiafshin@gmail.com

Abstract

In this paper, using direct method, we prove the generalized Hyers-Ulam stability of the following quadratic functional equation

\[
\sum_{1 \leq i < j \leq m} f(x_i + x_j) + f(x_i - x_j) = 2(m - 1) \sum_{i=1}^{m} f(x_i)
\]

for all \(x_1, x_2, \ldots, x_m \in X\), where \(m \geq 2\) in random normed spaces.

Mathematics Subject Classification: 39B22

Keywords: Stability, random normed spaces
1 Introduction

A classical question in the theory of functional equations is the following: "When is it true that a function which approximately satisfies a functional equation \(D \) must be close to an exact solution of \(D \)?.

If the problem accepts a solution, we say that the equation \(D \) is stable. The first stability problem concerning group homomorphisms was raised by Ulam [8] in 1940.

We are given a group \(G \) and a metric group \(G' \) with metric \(d(\cdot, \cdot) \). Given \(\varepsilon > 0 \), does there exist a \(\delta > 0 \) such that if \(f : G \to G' \) satisfies \(d(f(xy), f(x)f(y)) < \delta \), for all \(x, y \in G \), then a homomorphism \(h : G \to G' \) exists with \(d(f(x), h(x)) < \varepsilon \) for all \(x \in G \)?.

Ulam's problem was partially solved by Hyers [4] in 1941. In 1978, Th. M. Rassias [5] formulated and proved the following theorem, which implies Hyers's Theorem as a special case. Suppose that \(E \) and \(F \) are real normed spaces with \(F \) a complete normed space, \(f : E \to F \) is a mapping such that for each fixed \(x \in E \) the mapping \(t \to f(tx) \) is continuous on \(R \), and let there exist \(\varepsilon > 0 \) and \(p \in [0, 1) \) such that for all \(x, y \in E \)

\[
\frac{||f(x + y) - f(x) - f(y)||}{||x||^p + ||y||^p} \leq \varepsilon
\]

Then there exists a unique linear mapping \(T : E \to F \) such that such that for all \(x \in E \)

\[
||f(x) - T(x)|| \leq \frac{\varepsilon||x||^p}{1 - 2^{p-1}}
\]

The functional equation

\[
f(x + y) + f(x - y) = 2f(x) + 2f(y)
\]

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [7] for mappings \(f : X \to Y \), where \(X \) is a normed space and \(Y \) is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain \(X \) is replaced by an Abelian group. In [2], Czerwik proved the generalized Hyers-Ulam stability of the quadratic functional equation.

2 Preliminary Notes

In the sequel, we shall adopt the usual terminologies, notions and conventions of the theory of random normed spaces(see [6]). Throughout this paper, the space of all probability distribution functions is denoted by \(\Lambda^+ \). Elements of
Λ^+ are functions $F : R \cup [-\infty, +\infty] \to [0, 1]$, such that F is left continuous and nondecreasing on R and $F(0) = 0, F(+\infty) = 1$. It’s clear that the subset

$$D^+ = \{F \in \Lambda^+ : l^- F(-\infty) = 1\};$$

where $l^- f(x) = \lim_{t \to x^-} f(t)$, is a subset of Λ^+. The space Λ^+ is partially ordered by the usual point-wise ordering of functions, that is for all $t \in R$, $F \leq G$ if and only if $F(t) \leq G(t)$.

Definition 2.1 A function $T : [0, 1]^2 \to [0, 1]$ is a continuous triangular norm (briefly a t-norm) if T satisfies the following conditions:

(i) T is commutative and associative;

(ii) T is continuous;

(iii) $T(x, 1) = x$ for all $x \in [0, 1]$;

(iv) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in [0, 1]$.

Definition 2.2 A random normed space (briefly RN-space) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm and $\mu : X \to D^+$ is a mapping such that the following conditions hold:

(i) $\mu_x(t) = H_0(t)$ for all $t > 0$ if and only if $x = 0$;

(ii) $\mu_{\alpha x}(t) = \mu_x(\frac{t}{|\alpha|})$ for all $\alpha \in R, \alpha \neq 0, x \in X$ and $t \geq 0$.

(iii) $\mu_{x+y}(t+s) \geq T(\mu_x(t), \mu_y(s))$, for all $x, y \in X$ and $t, s \geq 0$.

Definition 2.3 Let (X, μ, T) be an RN-space. A sequence $\{x_n\}$ in X is said to be converges to $x \in X$ if for all $t > 0$, $\lim_{n \to \infty} \mu_{x_n-x}(t) = 1$.

Definition 2.4 A sequence $\{x_n\}$ in (X, μ, T) is said to be a Cauchy sequence in X if for all $t > 0$, $\lim_{n \to \infty} \mu_{x_n-x_m}(t) = 1$. The RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent.

Theorem 2.5 If (X, μ, T) is an RN-space and $\{x_n\}$ is a sequence such that $x_n \to x$, then $\lim_{n \to \infty} \mu_{x_n}(t) = \mu_x(t)$.

3 Main Results

Lemma 3.1 Let X and Y be vector spaces. A mapping $f : X \to Y$ satisfies the functional equation

$$\sum_{1 \leq i < j \leq m} f(x_i \pm x_j) = 2(m - 1) \sum_{i=1}^{m} f(x_i)$$

if and only if f is quadratic.
Proof: Let \(f \) be a quadratic function. Assume the equation (4) is true for \(n \) by induction argument. By (3)

\[
f(x_i + x_{n+1}) + f(x_i - x_{n+1}) - 2f(x_i) - 2f(x_{n+1}) = 0
\]

for all \(i = 1, \ldots, n \). Adding up (3) and (5), we have the desired equation (3) for \(n + 1 \). Conversely, let \(f \) satisfy the equation (3). By letting \(x_i = 0 \) for all \(i = 1, 2, \ldots, n \), we have \(f(0) = 0 \). Replacing \(x_i = 0 \) for all \(i = 3, 4, \ldots, n \), we obtain the equation

\[
f(x_1 + x_2) + f(x_1 - x_2) = 2f(x_1) + 2f(x_2) = 0
\]

which implies that \(f \) is quadratic. The proof is complete.

Theorem 3.2 Let \(X \) be a real linear space, \((Z, \mu', \min)\) be an RN-space, \(\phi : X^m \rightarrow Z \) be a function such that for some \(0 < \alpha < 4 \),

\[
\mu'_\phi(2x_1, \ldots, 2x_m)(t) \geq \mu'_{\alpha\phi(x_1, \ldots, x_m)}(t) \quad \forall x_1, \ldots, x_n \in X, \ t > 0
\]

(7)

if \(f(0) = 0 \) and for all \(x_1, \ldots, x_m \in X \) and \(t > 0 \), \(\lim_{n \to \infty} \mu'_{\phi(2^n x_1, \ldots, 2^n x_n)}(4^n t) = 1 \). Let \((Y, \mu, \min)\) be a complete RN-space. If \(f : X \rightarrow Y \) is a mapping such that for all \(x_1, \ldots, x_n \in X \) and \(t > 0 \)

\[
\mu\sum_{1 \leq i < j \leq m} f(x_i + x_j) + f(x_i - x_j) - 2\sum_{i=1}^m f(x_i)(t) \geq \mu'_\phi(x_1, \ldots, x_m)(t),
\]

(8)

then the limit \(Q(x) := \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \) exist for all \(x \in X \) and \(Q : X \rightarrow Y \) is a unique quadratic mapping satisfying the inequality

\[
\mu_{f(x)-Q(x)}(t) \geq \mu'_{\phi(x, \ldots, x)}(\frac{m(m-1)(4-\alpha)t}{2}).
\]

(9)

Proof: Putting \(x_1 = x_2 = \cdots = x_m = x \) in (8), we obtain

\[
\mu\frac{m(m-1)}{2} f(2x) - 2m(m-1)f(x)(t) \geq \mu'_{\phi(x, \ldots, x)}(t).
\]

(10)

So

\[
\mu f(2x) - f(x)(t) \geq \mu'_{\phi(x, \ldots, x)}(2m(m-1)t).
\]

(11)

Replacing \(x \) by \(2^n x \) in (11) and using (7), we obtain

\[
\mu f(2^n x) - f(x)(t) \geq \mu'_{\phi(2^n x, 2^n x, \ldots, 2^n x)}(2 \times 4^n m(m-1)t)
\]

\[
\geq \mu'_{\phi(x, \ldots, x)}(\frac{2 \times 4^n m(m-1)t}{\alpha^n}).
\]

(12)
So by (12), we obtain
\[
\mu_{f(2^{n+1}x)} - f(x) \left(\sum_{k=0}^{n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) = \mu \sum_{k=0}^{n-1} \frac{f(2^{k+1}x)}{2^{k+1}} \left(\sum_{k=0}^{n-1} \frac{2 \times 4^k m (m-1)}{t \alpha^k} \right) \geq T_{n=0}^{n-1} \left(\mu_{f(2^{k+1}x)} - \frac{f(2^{k+1}x)}{2^{k+1}} \left(\sum_{k=0}^{n-1} \frac{2 \times 4^k m (m-1)}{t \alpha^k} \right) \right) \geq T_{n=0}^{n-1} \left(\mu'_{\phi(x,x,\cdots,x)} (t) \right) = \mu'_{\phi(x,x,\cdots,x)} (t) \tag{13}
\]

This implies that
\[
\mu_{f(2^{n+1}x)} - f(x) (t) \geq \mu'_{\phi(x,x,\cdots,x)} \left(\sum_{k=0}^{n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) \tag{14}
\]

Replacing \(x \) by \(2^p x \) in (14), we obtain
\[
\mu_{f(2^{p+n}x)} - \frac{f(2^{p}x)}{4^p} (t) \geq \mu'_{\phi(x,x,\cdots,x)} \left(\sum_{k=0}^{p+n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) \tag{15}
\]

As \(\lim_{p,n \to \infty} \mu'_{\phi(x,x,\cdots,x)} \left(\sum_{k=0}^{p+n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) = 1 \) then \(\left\{ \frac{f(2^{n}x)}{4^n} \right\}_{n=1}^{\infty} \) is a Cauchy sequence in complete RN-space \((Y, \mu, \min)\), so there exist some point \(C(x) \in Y \) such that \(\lim_{n \to \infty} \frac{f(2^{n}x)}{4^n} = Q(x) \). Fix \(x \in X \) and put \(p = 0 \) in (15). Then we obtain
\[
\mu_{f(2^{n}x)} - f(x) (t) \geq \mu'_{\phi(x,x,\cdots,x)} \left(\sum_{k=0}^{n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) \tag{16}
\]

and so, for every \(\epsilon > 0 \), we have
\[
\mu_{C(x)-f(x)} (t + \epsilon) \geq T \left(\mu_{Q(x)-\frac{f(2^n x)}{4^n}} (\epsilon), \mu_{f(2^n x)} - f(x) (t) \right) \geq T \left(\mu_{Q(x)-\frac{f(2^n x)}{4^n}} (\epsilon), \mu'_{\phi(x,x,\cdots,x)} \left(\sum_{k=0}^{n-1} \frac{t \alpha^k}{2 \times 4^k m (m-1)} \right) \right) \tag{17}
\]

Taking the limit as \(n \to \infty \), we get
\[
\mu_{C(x)-f(x)} (t + \epsilon) \geq \mu'_{\phi(x,x,\cdots,x)} \left(\frac{m(m-1)(4-\alpha)t}{2} \right) \tag{18}
\]

Since \(\epsilon \) was arbitrary by taking \(\epsilon \to 0 \) in (18), we obtain
\[
\mu_{C(x)-f(x)} (t) \geq \mu'_{\phi(x,x,\cdots,x)} \left(\frac{m(m-1)(4-\alpha)t}{2} \right) \tag{19}
\]

Replacing \(x \) and \(y \) by \(2^nx \) and \(2^ny \), respectively, in (8) and using this fact that \(\lim_{n \to \infty} \mu'_{\phi(2^n x_1,\cdots,2^n x_n)} (4^n t) = 1 \), we get for all \(x_1, \cdots, x_n \in X \) and for all \(t > 0 \)
\[
\sum_{1 \leq i < j \leq m} Q(x_i + x_j) + Q(x_i - x_j) = 2 \sum_{i=1}^{m} Q(x_i).
\]
Therefore, the mapping Q is quadratic. To prove the uniqueness of mapping Q, assume that there exist another additive mapping $R : X \to Y$ which satisfies (9). Since for all $n \in \mathbb{N}$ and every $x \in X$, $Q(2^n x) = 4^n Q(x)$ and $R(2^n x) = 4^n R(x)$, we find that
\[
\mu_{Q(x)-R(x)}(t) = \lim_{n \to \infty} \mu_{Q(2^n x)-R(2^n x)}(t).
\] (20)

So
\[
\mu_{Q(2^n x)-R(2^n x)}(t) \geq \min\{\mu_{Q(2^n x)-R(2^n x)}(\frac{t}{2}), \mu_{Q(2^n x)-R(2^n x)}(\frac{t}{2})\} \\
\geq \mu'_{2^n x, \mu} m(m-1)4^n(4-\alpha) t \quad \frac{t}{2} \\
\geq \mu'_{2^n x, \mu} m(m-1)4^n(4-\alpha) t.
\] (21)

Since $\lim_{p \to \infty} m(m-1)4^n(4-\alpha) = 0$, we get
\[
\lim_{p \to \infty} \mu'_{2^n x, \mu} m(m-1)4^n(4-\alpha) t = 1.
\]
Therefore, for all $t > 0$, $\mu_{Q(x)-R(x)}(t) = 1$ and so $Q(x) = R(x)$. This completes the proof.

Corollary 3.3 Let X be a real linear space, (Z, μ', \min) be an RN-space, and (Y, μ, \min) a complete RN-spaces. Let $p \in (0, 1)$ and $z_0 \in Z$. If $f : X \to Y$ is a mapping with $f(0) = 0$ and for all $x_1, \ldots, x_m \in X$ and $t > 0$
\[
\mu_{\sum_{1 \leq i \leq j \leq m} f(x_i + x_j) + f(x_i - x_j) - 2 \sum_{i=1}^m f(x_i)}(t) \geq \mu'_{\sum_{i=1}^m \|x_i\|p} z_0(t),
\] (22)
then there is a unique quadratic mapping $Q : X \to Y$ such that
\[
\mu_{f(x) - Q(x)}(t) \geq \mu'_{\|x\|p} z_0 \left(\frac{m(m-1)(4-4^p)t}{2m} \right).
\] (23)

Proof: Let $\alpha = 4^p$ and $\phi : X^m \to Z$ defined by $\phi(x_1, \ldots, x_m) = (\sum_{i=1}^m \|x_i\|p} z_0$. Applying Theorem (3.2), we get desired result.

Acknowledgement

The second and third authors were supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792) and (NRF-2010-0009232), respectively.
References

Received: March, 20111