Generalised $L^* - (p, q)$th Order of the Derivative of a Meromorphic Function

Sanjib Kumar Datta

Department of Mathematics, University of Kalyani
P.O.-Kalyani, Dist-Nadia, Pin-741235
West Bengal, India
Former Address:
(Department of Mathematics, University of North Bengal
P.O.-North Bengal University, Raja Rammohunpur
Dist-Darjeeling, Pin-734013
West Bengal, India)
sanjib.kr.datta@yahoo.co.in
s.kr.datta.ku@yahoo.co.in
sk.datta.nbu@yahoo.co.in

Meghlal Mallik

Panighata U.D.M. High School
P.O.-Paglachandi, Dist Nadia, Pin-741181
West Bengal, India
meghlal1982@yahoo.com
meghlal_mallik@yahoo.com

Abstract

In this paper we generalise the results of Datta and Mondal [3].

Mathematics Subject Classification: 30D30, 30D35

Keywords and phrases: Meromorphic function, generalised $L^* - (p, q)$th order, derivative

1 Introduction, Definitions and Notations.

We know \{cf.[10], p.36\} that the order of the derivative of an entire function is equal to the order of the function. The same result is proved for a meromorphic function in \{cf.[1], [9], [11]\}. In [6] and [7] Lahiri proved that
the generalised order (generalised lower order) of a meromorphic function \(f \) is equal to the generalised order of its derivative \(f' \). Using the notion of \((p, q)\)th order \((p, q)\)th lower order\) for any two positive integers with \(p > q \) of an entire function introduced by Juneja, Kapoor and Bajpai [5] and the notion of slowly changing functions investigated by Somasundaram and Thamizharasi [8], Datta and Mondal [3] established a relationship between the \(L - (p, q) \)th order of the derivative of a meromorphic function and that of the original function where \(L \equiv L(r) \) is a positive continuous function increasing slowly i.e., \(L(ar) \sim L(r) \) as \(r \to \infty \) for every constant ‘a’ and \(p, q \) are any two positive integers with \(p > q \). In this paper we generalise the results of Datta and Mondal [3] and for this we introduce the following definition:

Definition 1. The generalised \(L^* - (p, q) \)th order with rate \(t \), \((t) \rho_{L^*}^f(p, q) \) and generalised \(L^* - (p, q) \)th lower order with rate \(t \), \((t) \lambda_{L^*}^f(p, q) \) of an entire function \(f \) are defined as

\[
(t) \rho_{L^*}^f(p, q) = \limsup_{r \to \infty} \frac{\log^{[p+1]} M(r, f)}{\log^{[q]} [r \exp^t L(r)]}
\]

and

\[
(t) \lambda_{L^*}^f(p, q) = \liminf_{r \to \infty} \frac{\log^{[p+1]} M(r, f)}{\log^{[q]} [r \exp^t L(r)]}
\]

where \(\log^{[k]} x = \log(\log^{[k-1]} x) \) for \(k = 1, 2, 3, \ldots \) and \(\log^{[0]} x = x \) and \(\exp^t x = \exp(\exp^{t-1} x) \) for \(t = 1, 2, 3, \ldots \) and \(\exp^{[0]} x = x \) and also \(p, q \) are any two positive integers with \(p > q \). When \(f \) is meromorphic, one can easily verify that

\[
(t) \rho_{L^*}^f(p, q) = \limsup_{r \to \infty} \frac{\log^{[p]} T(r, f)}{\log^{[q]} [r \exp^t L(r)]}
\]

and

\[
(t) \lambda_{L^*}^f(p, q) = \liminf_{r \to \infty} \frac{\log^{[p]} T(r, f)}{\log^{[q]} [r \exp^t L(r)]}.
\]

In the paper we do not explain the standard notations and definitions in the theory of entire and meromorphic functions because those are available in [10] and [4].

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [7] Let \(f \) be a transcendental meromorphic function. Then

\[
T(r, f') \leq 2T(2r, f) + o\{T(2r, f)\}
\]

for all large values of \(r \).
Lemma 2. {Theorem 4.1, [12]; see also Lemma C, [2]} Let f be a meromorphic function. Then for all large r,

$$T(r, f) < C \{T(2r, f') + \log r\}$$

where C is a constant which is only dependent on $f(0)$.

3 Theorems.

In this section we present the main results of the paper.

Theorem 1. The generalised $L^* - (p, q)$th order with rate t of a meromorphic function f is equal to the generalised $L^* - (p, q)$th order of its derivative f' where p, q are positive integers and $p > q$ with $t = 1, 2, 3, ...$

Proof. We suppose that f is a transcendental meromorphic function because otherwise the theorem follows easily.

From Lemma 1 we get by taking logarithms ($p - 1$)times

$$\log^{[p-1]} T(r, f') \leq \log^{[p-1]} T(2r, f) + O(1)$$

which gives that

$$(^t) \rho_f^{L^*}(p, q) \leq \limsup_{r \to \infty} \left\{ \frac{\log^{[p-1]} T(r, f)}{\log^{[q]} [r \exp[t] L(r)]} \cdot \lim_{r \to \infty} \frac{1}{1 - \frac{\log 2}{\log^{[2]} [r \exp[t] L(r)]}} \right\}$$

$$= \limsup_{r \to \infty} \frac{\log^{[p-1]} T(r, f)}{\log^{[q]} [r \exp[t] L(r)]} \cdot \lim_{r \to \infty} \frac{1}{1 - \frac{\log 2}{\log^{[2]} [r \exp[t] L(r)]}}$$

$$= (^t) \rho_f^{L^*}(p, q). \quad (1)$$

Since f is transcendental, we have

$$\log r = o\{T(r, f)\}.$$

From Lemma 2 we obtain by taking repeated logarithms

$$\log^{[p-1]} T(r, f) + O(1) \leq \log^{[p-1]} T(2r, f')$$

which gives that

$$(^t) \rho_f^{L^*}(p, q) \leq \limsup_{r \to \infty} \frac{\log^{[p-1]} T(r, f')}{\log^{[q]} [r \exp[t] L(r)]} \cdot \lim_{r \to \infty} \frac{1}{1 - \frac{\log 2}{\log^{[2]} [r \exp[t] L(r)]}}$$
Thus the theorem follows from (1) and (2).

Remark 1. Theorem 1 is a generalisation of Theorem 1 [3].

Theorem 2. The generalised $L^*(p, q)$th lower order with rate t of a meromorphic function f is equal to the generalised $L^*(p, q)$th lower order of its derivative f' where p, q are positive integers and $p > q$ with $t = 1, 2, 3, ...$

We omit the proof of Theorem 2 as it is similar to that of Theorem 1.

Remark 2. Theorem 2 is a generalisation of Theorem 2 [3].

Theorem 3. If f is a transcendental meromorphic function having a finite number of zeros with $f(0) \neq 0, \infty, f'(0) \neq 0$ and $(t)\rho_L^*(2, 1) < \infty$ then $(t)\rho_{L'}^*(p, q) = (t)\rho_L^*(p, q)$

and $(t)\lambda_{L'}^*(p, q) = (t)\lambda_L^*(p, q)$

where p, q are positive integers and $p > q$ with $t = 1, 2, 3, ...$

Proof. From {Theorem 2.2, [4], p.40} we know that

$$m(r, \frac{f'}{f}) = O(\log r).$$

Also by Theorem {2.3, [4], p.41} we obtain in the present case,

$$\log r = o\{T(r, f)\} \text{ as } r \to \infty.$$

So combining the two we get that

$$m(r, \frac{f'}{f}) = o\{T(r, f)\} \text{ as } r \to \infty.$$

Since f has a finite number of zeros, it is clear that

$$N(r, \frac{1}{f}) = O(\log r).$$

Hence $N(r, \frac{1}{f}) = o\{T(r, f)\} \text{ as } r \to \infty.$

Now $m(r, f') \leq m(r, \frac{f'}{f}) + m(r, f)$

i.e., $m(r, f') \leq m(r, f) + o\{T(r, f)\} \text{ as } r \to \infty.$

Also if f has a pole of order p at z_0, $f'(z)$ has a pole of order $p + 1 \leq 2p$, so that

$$N(r, f') \leq 2N(r, f) \{p.56,[4]\}.$$
Thus by addition we deduce that
\[T(r, f') \leq m(r, f) + 2N(r, f) + o\{T(r, f)\} \]
i.e., \(T(r, f') \leq 2T(r, f) + o\{T(r, f)\} \)
i.e., \(T(r, f') \leq \{2 + o(1)\}T(r, f) \) as \(r \to \infty \). \((3) \)

This gives that
\[(t) \rho_{f'}^L (p, q) \leq (t) \rho_f^L (p, q). \] \((4) \)

Again we have
\[T(r, f) = m(r, \frac{1}{f}) + N(r, \frac{1}{f}) + O(1) \]
i.e., \(T(r, f) \leq m(r, \frac{1}{f}) + m(r, \frac{f'}{f}) + N(r, \frac{1}{f}) + O(1) \)
i.e., \(T(r, f) \leq m(r, \frac{1}{f}) + o\{T(r, f)\} \)
i.e., \(T(r, f) \leq T(r, \frac{1}{f}) + o\{T(r, f)\} \)
i.e., \(T(r, f) \leq T(r, f') + o\{T(r, f)\} \) as \(r \to \infty \)
i.e., \(\{1 + o(1)\}T(r, f) \leq T(r, f') \) as \(r \to \infty \). \((5) \)

This gives that
\[(t) \rho_{f'}^L (p, q) \leq (t) \rho_{f'}^L (p, q). \] \((6) \)

Thus the first part of the theorem follows from (4) and (6).

Similarly, \((t) \lambda_{f'}^L (p, q) = (t) \lambda_f^L (p, q). \)

This proves the theorem.

Remark 3. Theorem 3 is a generalisation of Theorem 3 [3].

Remark 4. Theorem 3 can also be proved with a lesser hypothesis
\[N(r, \frac{1}{f}) = O(\log r) \]

than ‘having a finite number of zeros.’
REFERENCES

[12] L. Yang: Value distribution and its new research, Beijing (1982), (The author had no access to this monograph).

Received: October, 2010