g*-Closed Sets in Topological Spaces

A. Pushpalatha

Department of Mathematics, Government Arts college
Udumalpet-642 126, Tirupur District
Tamilnadu, India

K. Anitha

Department of Mathematics
Sri Subramanya college of Engineering and Technology
Palani-624 601, Dindugal District
Tamilnadu, India

Abstract

G.B.Navalagi [2] introduced a new class of set called g*-closed sets in topological space. In this paper, we study the properties of g*-closed sets.

Key words: g*-closed sets, g*-open sets, g*-continuous functions, g*-closed maps and g*-open maps.

1. Introduction

2. Preliminaries

Definition 2.1 A subset of a topological space \((x, \tau)\) is called

(i) Generalised closed (briefly g-closed) \([1]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(ii) Generalised semiclosed (briefly gs-closed) \([11]\) if \(\text{scl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(iii) Semi-generalised closed (briefly sg-closed) \([9]\) if \(A \subseteq U\) and \(U\) is semiopen in \(X\). Every semi closed set is sg-closed.

(iv) Weakly closed (briefly w-closed) \([10]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi-open in \(X\).

(v) Weakly generalized closed (briefly wg-closed) \([7]\) if \(\text{cl}(\text{int} A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(vi) Generalised \(\alpha\)-closed (briefly g\(\alpha\)-closed) \([3]\) if \(\alpha\)-cl \((A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\alpha\)-open in \(X\).

(vii) \(\alpha\)-generalised closed (briefly \(\alpha\)g-closed) \([4]\) if \(\alpha\)-cl \((A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).

(viii) Regular w-closed (briefly rw-closed) \([12]\) if \(\alpha\)-cl \((A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular semiopen in \(X\).

(xi) Strongly g-closed \([1]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).

(Xii) \(g^*\)s-closed set \([2]\) if \(\text{scl}(A) \subseteq U\) whenever \(A \subseteq U\), \(U\) is gs-open.

The class of all \(g^*\)s-closed set \(s\) in a topological space \((x, \tau)\) is denoted by \(g^*\text{-c} (x, \tau)\).

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2 A function \(f: X \rightarrow Y\) is called

(i) Strongly continuous if \(f^{-1}(V)\) is both open and closed in \(X\) for each subset \(V\) in \(Y\) \([5]\)

(ii) Perfectly continuous if \(f^{-1}(V)\) is both open and closed in \(X\) for each open set \(V\) in \(Y\) \([8]\)

(iii) Generalized continuous (g-continuous) if \(f^{-1}(V)\) is g-open in \(X\) for each open set \(V\) in \(Y\) \([13]\)
(iv) Strongly g-continuous if $f^{-1}(V)$ is open in X for each g-open set V in Y
(v) Semi-generalized continuous (sg-continuous) if $f^{-1}(V)$ is sg-open in X for each open set V in Y [13]
(vi) Generalized semi-continuous (gs-continuous) if $f^{-1}(V)$ is gs-open in X for each open set V in Y

3. g^*s-closed sets in topological spaces

Definition 3.1

A subset A of X is called a g^*s-closed set if $scl(A) \subseteq U$ whenever $A \subseteq U$, U is gs-open.

The class of all g^*s-closed sets in a topological space (X, τ) is denoted by g^*s-c (X, τ).

Remark:3.2

The complement of g^*s-closed set is g^*s-open set.

Theorem:3.3

Every closed set in X is g^*s-closed in X but not conversely.

Proof:-

Let A be a closed set in X. Let U be a gs-open set such that $A \subseteq U$. Since A is closed, that is $cl(A) = A$, $cl(A) \subseteq U$. But $scl(A) \subseteq cl(A) \subseteq U$. Therefore $scl(A) \subseteq U$. Hence A is g^*s-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

Example:3.4

Consider the topological space $X = \{a, b, c\}$ with the topology $\tau = \emptyset, X, \{a\}$. The sets $\{b\}$ and $\{c\}$ are g^*s-closed sets but not closed.

Theorem:3.5

Union of two g^*s-closed sets is g^*s-closed.
Proof:

Let A and B be g^*s-closed sets in X. Let U be a gs-open in X such that $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since A and B are g^*s-closed sets, $\text{scl}(A) \subseteq U$ and $\text{scl}(B) \subseteq U$. Hence $\text{scl}(A \cup B) = \text{scl}(A) \cup \text{scl}(B) \subseteq U$. Therefore $A \cup B$ is g^*s-closed.

Theorem 3.6

Every g^*s-closed set is gs-closed but not conversely.

Proof:

Let A be a g^*s-closed set in X. Let U be an open set such that $A \subseteq U$. Since every open set is gs-open and A is g^*s-closed, we have $\text{scl}(A) \subseteq U$. Therefore A is gs-closed in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.7

Consider the topological space $X = \{a, b, c\}$ with topology $\tau = \emptyset, X, \{a\}, \{a, c\}$. Then the set $\{a, b\}$ is gs-closed but not g^*s-closed.

Theorem 3.8

Every g^*s-closed set set in X is a sg-closed set in X but not conversely.

Proof:

Let A be a g^*s-closed in X. Let U be a semi-open set in X such that $A \subseteq U$. Since every semiopen set is gs-open and A is g^*s-closed, we have $\text{scl}(A) \subseteq U$. Therefore A is sg-closed in X.

The converse of the above theorem need not be true as seen from the following example.

Example 3.9

Consider the topological space $X = \{a, b, c\}$ with the topology $\tau = \emptyset, X, \{a, b\}$. The sets $\{a, c\}, \{b, c\}$ are sg-closed sets but not g^*s-closed sets.

From the above theorem 3.3, 3.6, 3.8 and examples 3.4, 3.7, 3.9. We get the following diagram.
The concept of g^s-closed set is independent of the following classes of sets namely g-closed set, g^*-closed set, w-closed set, pre-closed set, $g\alpha$-closed set, αg-closed set and strongly generalized closed sets.

Example:3.11

Consider the topological space $X=\{a, b, c\}$ with topology $\tau=\emptyset, X, \{a\}, \{a, c\}$. In this space, the set $\{a, b\}$ is g-closed set but not g^s-closed set and the set $\{c\}$ is g^s-closed set but not g-closed set.

Example:3.12

Consider the topological space $X=\{a, b, c\}$ with topology $\tau=\emptyset, X, \{a\}, \{a, b\}$. In this space the set $\{a, c\}$ is g^*-closed set but not g^s-closed set and the set $\{b\}$ is g^s-closed set but not g^s-closed set.

Example:3.13

Consider the topological space $X=\{a, b, c\}$ with topology $\tau=\emptyset, X, \{c\}$. In this space $\{a\} & \{b\}$ are g^s-closed sets but not w-closed sets. In topology $\tau=\emptyset, X, \{a\}, \{b, c\}$, the sets $\{b\}, \{c\}, \{a, b\}, \{a, c\}$ are w-closed sets but not g^s-closed sets.

Example:3.14

Consider the topological space $X=\{a, b, c\}$ with topology $\tau=\emptyset, X, \{a\}, \{b\}, \{a, b\}$. In this space $\{a\}, \{b\}$ are g^s-closed but not pre-closed sets. In topology $\tau=\emptyset, X, \{a\}, \{b, c\}$, the sets $\{b\}, \{c\}, \{a, b\}, \{a, c\}$ are pre-closed sets but not g^s-closed sets.

Example:3.15

Consider the topological space $X=\{a, b, c\}$ with topology $\tau=\emptyset, X, \{a\}, \{a, c\}$. In this space, the set $\{a, b\}$ is strongly generalized closed set, $g\alpha$-closed set and αg-closed set but not g^s-closed set. Also the set $\{c\}$ is g^s-closed but any of the sets mentioned above.
Theorem: 3.16

A subset A of X is g*s-closed set in X iff scl(A) - A contains no non empty gs-closed set in X.

Proof:

Suppose that F is a non empty gs-closed subset of scl(A) - A. Now F is scl(A) - A. Then F is scl(A) - A. Since F is gs-open set and A is g*s-closed, scl(A) - F is contained in scl(A) - A. Which is a contradiction. Therefore F = ∅.

Thus scl(A) - A contains no non empty gs-closed set.

Conversely, assume that scl(A) - A contains no non empty gs-closed set. Let A is g*s-closed set. Let A ⊆ U, U is g*s-closed. Suppose that scl(A) is not contained in U. Then scl(A)∩U is a non empty gs-closed set contained in scl(A) - A. Which is a contradiction. Therefore scl(A) ⊆ U and hence A is g*s-closed set.

Theorem: 3.17

Let (X, τ) be a compact topological space. If A is g*s-closed subset of X, then A is compact.

Proof:

Let {U_i} be a open cover of A. Since every open set is gs-open and A is g*s-closed. We get scl(A) ⊆ U_i. Since a closed subset of a compact space is compact, scl(A) is
compact. Therefore there exist a finite subover say \{U_1 \cup U_2 \cup \ldots \cup U_n\} of \{U_i\} for \text{scl}(A). So, A \subseteq \text{scl}(A) \subseteq U_1 \cup U_2 \cup \ldots \cup U_n. Therefore A is compact.

Theorem 3.18

Let \((X,\tau)\) be Lindelof [countably compact] and suppose that A is \(g^s\)-closed subset of X. Then A is Lindelof of [countably compact].

Proof:

Let \{U_i\} be a countable open cover of A. Since every open set is \(g^s\)-open \{U_i\} is a countable \(g^s\)-open cover of A. U_i is \(g^s\)-open. Then \text{scl}(A) \subseteq \bigcup U_i because A is \(g^s\)-closed. Since a closed subset of a Lindelof space is Lindelof, \text{scl}(A) is Lindelof. There \text{scl}(A) has countable subover, say \{U_1, U_2, \ldots \cup U_n\} and it follows that A \subseteq \text{scl}(A) \subseteq U_1 \cup U_2 \cup \ldots \cup U_n. Hence A is Lindelof.

Definition 3.19

A subset A of a topological space X is called \(g^s\)-open set if \(A^c\) is \(g^s\)-closed. The class of all \(g^s\)-closed sets is denoted as \(g^s\)-O \((X,\tau)\).

Theorem 3.20

If A and B are \(g^s\)-open sets in X than A \(\cap\) B also \(g^s\)-open set in X.

Proof:

Let A and B be two \(g^s\)-open sets in X. Then \(A^c\) and \(B^c\) are \(g^s\)-closed sets in X. By theorem 3.5, \(A^c \cup B^c\) is a \(g^s\)-closed set in X. That is \((A \cap B)^c\) is a \(g^s\)-closed set in X. Therefore \((A \cap B)^c\) is \(g^s\)-open set in X.

Theorem 3.21

For each \(x \in X\), either \{x\} is gs-closed or \([x]^c\) is \(g^s\)-closed in X.

Proof:

If \{x\} is not gs-closed, then the only gs-open set containing \([x]^c\) in X. Thus semi closure of \([x]^c\) is contained in X and hence \([x]^c\) is \(g^s\)-closed in X.
4. g^s-continuous functions in Topological spaces

Levine [5] introduced semi continuous functions using semi open sets. The study on the properties of semi-continuous functions is further carried out by Noiri[8], Crossely and Hildebrand and many others. Sundram [13] introduced the concept of generalized continuous functions includes the class of continuous functions and studies several properties related to it.

In this section, we introduce the concepts of g^s–continuous functions, g^s–closed maps, g^s–open maps, g^s–irresolute maps and g^s–homeomorphisms in Topological spaces and study their properties.

Definition : 4.1

A map $f: x \rightarrow y$ from a topological space X into a topological space y is called g^s–continuous if the inverse image of every closed set in y is g^s–closed in X.

Theorem: 4.2

If a map $f: x \rightarrow y$ is continuous, then it is g^s–continuous but not conversely.

Proof:

Let $f: x \rightarrow y$ be continuous Let F be any closed set in Y. The the inverse image $f^{-1}(F)$ is closed in Y. Since every closed set is g^s–closed, $f^{-1}(F)$ is g^s–closed in X. Therefore f is g^s–continuous.

The converse need not be true as seen from the following example.

Example: 4.3

Let $X=Y=\{a,b,c\}$, $\tau=\{\emptyset, x, \{b\}\}$ and $\sigma=\{\emptyset, y, \{a, b\}\}$. Let $f: x \rightarrow y$ be the identify map.

Then f is not continuous, since for the closed $\{c\}$ in y, $f^{-1}(\{c\})=\{c\}$ is not closed in X. But f is g^s–continuous.

Theorem: 4.4

If a map $f: x \rightarrow y$ is g^s–continuous then it is g^s–continuous but not conversely.

Proof:

Let $f: x \rightarrow y$ be g^s–continuous. Let F be any closed in Y (ie) F is g^s–closed set is g^s–closed in y, $f^{-1}(F)$ is g^s–closed in X. Therefore f is g^s–continuous.
The converse of the above theorem need not be true in the following example.

Example: 4.5

Let \(X = \{a, b, c\} \), \(T = \{\emptyset, X, \{a\}\} \), \(S = \{\emptyset, y, \{b\}\} \). Let \(f: (X, T) \rightarrow (y, S) \) be the identity map.

Then \(f \) is gs-continuous but not g*s-continuous. Since \(\{a, c\} \) is closed in \(y \) but \(f^{-1}(\{a, c\}) = \{a, c\} \) is not g*s-closed in \(X \).

Theorem: 4.6

Let \(f: x \rightarrow y \) be a map. Then the following statements are equivalent (a) \(f \) is g*s-continuous, (b) the inverse image of each open set in \(y \) is g*s-open in \(x \).

Proof:

Assume that \(f: x \rightarrow y \) is g*s-continuous. Let \(G \) be open in \(y \). The \(G^c \) is closed in \(y \). Since \(f \) is g*s-continuous, \(f^{-1}(G^c) \) is g*s-closed in \(X \). But \(f^{-1}(G^c) = x - f^{-1}(G) \). Thus \(f^{-1}(G) \) is g*s-open in \(X \).

Conversely assume that the inverse image of each open set in \(Y \) is g*s-open in \(X \). Let \(F \) be any closed set in \(Y \). By assumption \(F \) is g*s-open in \(X \). But \(f^{-1}(F) = X - f^{-1}(F) \). Thus \(X - f^{-1}(F) \) is g*s-open in \(X \) and so \(f^{-1}(F) \) is g*s-closed in \(X \). Therefore \(f \) is g*s-continuous. Hence (a) & (b) are equivalent.

Theorem: 4.7

Let \(X \) and \(Z \) be any topological spaces and \(Y \) be a \(T_{g^{**}} \)-space and \(y \) be a \(T_{g^{**}} \)-space. Then the composition \(g \circ f : x \rightarrow z \) of the g*s-continuous map, \(f: x \rightarrow z \) and \(g: y \rightarrow z \) is also g*s-continuous.

Proof:

Let \(F \) be closed in \(Z \). Since \(g \) is g*s-continuous, \(g^{-1}(F) \) is g*s-closed in \(y \). But \(y \) is a \(T_{g^{**}} \)-space and so \(g^{-1}(F) \) is closed. Since \(f \) is g*s-continuous, \(f^{-1}(g^{-1}(F)) \) is g*s-closed in \(X \). But \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \). Therefore \(g \circ f \) is g*s-continuous.

We illustrate the relations between various generalizations of continuous functions in the following diagram:

[Diagram showing relations between continuity, g*s-continuity, gs-continuity]
None of the implications in the above diagram can be reversed.

5 g*s –closed maps and g*s-open maps in Topological spaces

In this section, we introduce the concepts of g*s –closed maps and g*s-open maps in Topological spaces.

Definition : 5.1

A map \(f: x \to y \) is called g*s –closed map if for each closed set \(F \) in \(X \), \(f(F) \) is a g*s –closed in \(y \).

Theorem: 5.2

If \(f: x \to y \) is a closed map then it is g*s –closed but not conversely.

Proof:

Since every closed set is g*s –closed, the result follows.

The converse of the above theorem need not be true as seen from the following example.

Example: 5.3

Consider the topological spaces \(X = y = \{a, b, c\} \) with topologies \(\tau = \{\emptyset, X, \{a\}\} \) and \(\sigma = \{\emptyset, y, \{b, c\}\} \). Hence \(((x, \tau), (y, \sigma)) \). Let \(f \) be the identify map from \(X \) onto \(y \). Then \(f \) is gs –continuous but not a closed map. Since the closed set \(\{b, c\} \) in \((x, \tau) \), \(f(\{b, c\}) = \{b, c\} \) is not closed set in \(Y \).

Definition : 5.4

A map \(f: x \to y \) is called a gs –open map if \(f(U) \) is g*s –open in \(Y \) for every open set \(U \) in \(X \).

Theorem: 5.5

If \(f: x \to y \) is an open map then it is g*s –open but not conversely.
Proof:

Let \(f: x \rightarrow y \) be an open map. Let \(U \) be any open set in \(X \). Then \(f(U) \) is an open set in \(Y \). Therefore \(f(U) \) is \(g^*s \) –open. Since every open set is \(g^*s \) –open.

The converse of the above theorem need not be true as seen from the following examples.

Example:5.6

Let \(X = y = \{a, b, c\} \) with topologies \(\tau = \{\emptyset, X, \{a, b\}\} \) and \(\sigma = \{\emptyset, y, \{b\}\} \). Here \(g^*s \) –

\(o(y, \sigma) = \{\emptyset, X, \{b, c\}, \{a, b\}, \{b\}\} \). Then the identify function \(f: x \rightarrow y \) is \(g^*s \) –open but not open.

Since for the open set \(\{a, b\} \) in \(x, f(\{a, b\}) = \{a, b\} \) is \(g^*s \) –open but not open in \(y, \sigma \).

Therefore \(f \) is not an open map.

Theorem:5.7

A map \(f: x \rightarrow y \) is \(g^*s \) –closed if and only if for each subset \(S \) of \(y \) and for each open set \(U \) containing \(f^{-1}(s) \) there is a \(g^*s \) –open set \(V \) of \(y \) such that \(S \subseteq V \) and \(f^{-1}(V) \subseteq U \).

Proof:

Suppose \(f \) is \(g^*s \) –closed. Let \(S \) be a sub set of \(Y \) and \(U \) is an open set of \(X \) such that \(f^{-1}(V) \subseteq U \).

Conversely suppose that \(F \) is a closed set in \(X \). Then \(f^{-1}(y - f(F)) = X - f \) and \(X - F \) is open. By hypothesis, there is a \(g^*s \) –open set \(V \) of \(Y \) such that \(f^{-1}(F) \subseteq U \) and \(f^{-1}(V) \subseteq X - F \). Therefore \(y - v \subseteq f(F) \subseteq f(x - y - v) \) which implies \(f(F) = y - v \). Since \(y - v \) is \(g^*s \) –

closed, \(f(F) \) is \(g^*s \) –closed and thus \(f \) is \(g^*s \) –closed map.

Theorem:5.8

If \(f: x \rightarrow y \) is closed and \(h: y \rightarrow z \) is \(g^*s \) –closed then \(h \circ f: x \rightarrow z \) is \(g^*s \) –closed.

Proof:

Let \(f: x \rightarrow y \) is a closed map and \(h: y \rightarrow z \) is a \(g^*s \) –closed map. Let \(V \) be any closed set in \(X \).

Since \(h \) is \(g^*s \) –closed, \(h(f(V)) \) is closed in \(y \) and since \(h \circ f: y \rightarrow z \) is \(g^*s \) –closed, \(h(f(V)) \) is a \(g^*s \) –closed set in \(Z \). Therefore \(h \circ f: x \rightarrow z \) is a \(g^*s \) –closed.

Theorem:5.9

If \(f: x \rightarrow y \) is a continuous, \(g^*s \) –closed map from a normal space \(X \) onto a space \(y \), then \(y \) is normal.
Proof:

Let A, B b disjoint closed set of Y. Then $f^{-1}(A)$, $f^{-1}(B)$ are dispoint closed sets of X. Since X is normal, then are dispoint open sets U, V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. By theorem 2.3.7 and since f is g^*s –closed set G,H in Y such that $A \subseteq G$, $B \subseteq H$,and $f^{-1}(G) \subseteq U$ and $f^{-1}(H) \subseteq U$. Since U,V are dispoint int(G) and int (H) are disjoint open sets. Since G is g^*s –open A is closed and $A \subseteq G \Rightarrow \subseteq$ int(G). Similarly $B \subseteq$ int(H). Hence Y is normal.

References

Received: October, 2010