Invariant Approximation Results for Pointwise R-Subweakly Commuting Maps

Marwan A. Kutbi

Department of Mathematics
King Abdul Aziz University
P.O. Box 80203, Jeddah 21589, Saudi Arabia
mkutbi@yahoo.com

Abstract
A common fixed point result for pointwise R-subweakly commuting maps in strongly M-starshaped metric spaces is obtained. As application, invariant approximation theorems are derived. Our results unify, and extend various known results existing in the literature.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Common fixed point, pointwise R-subweakly commuting maps, strongly M-starshaped metric space, invariant approximation

1. Introduction and preliminaries

We first review needed definitions. Let X be a metric space with metric d, $M \subset X$ and $J=[0,1]$. The space X is called;

(1) M-starshaped [22] if there exists a continuous mapping $W : X \times M \times J \rightarrow X$ satisfying

$$d(x, W(y, q, \lambda)) \leq \lambda d(x, y) + (1 - \lambda) d(x, q)$$

for all $x, y \in X$, $q \in M$ and all $\lambda \in J$;

(2) strongly M-starshaped [1, 16] if it is M-starshaped and satisfies the property (I), that is,

$$d(W(x, q, \lambda), W(y, q, \lambda)) \leq \lambda d(x, y)$$

for all $x, y \in X$, $q \in M$ and all $\lambda \in J$; (3) (strongly) convex if it is (strongly)
X-starshaped; (4) starshaped if it is \(\{q\}\)-starshaped for some \(q \in X \). Strongly convex metric space is also said to be a metric space of hyperbolic type (see Ciric [4]). Obviously, every normed space \(X \) is a strongly convex metric space with \(W \) defined by

\[
W(x, q, \lambda) = \lambda x + (1 - \lambda)q
\]

for all \(x, q \in X \) and all \(\lambda \in J \). More generally, if \(X \) is a linear space with a translation invariant metric satisfying

\[
d(\lambda x + (1 - \lambda)y, 0) \leq \lambda d(x, 0) + (1 - \lambda)d(y, 0),
\]

then \(X \) is a strongly convex metric space. A subset \(D \) of a \(M \)-starshaped metric space \(X \) is called \(q \)-starshaped if there exists \(q \in D \cap M \) such that \(W(x, q, \lambda) \in D \) for all \(x \in D \) and all \(\lambda \in J \). For details, we refer the reader to Al-Thagafi [1], Guay et al.[6] and Takahashi [22]).

Let \(I, T : X \to X \) be two mappings and \(D \subset X \). Then \(T \) is called;
(5) \(I \)-nonexpansive on \(D \) if \(d(Tx, Ty) \leq d(Ix, Iy) \), for all \(x, y \in D \); (6) \(I \)-contraction on \(D \) if there exists \(k \in [0, 1) \) such that \(d(Tx, Ty) \leq kd(Ix, Iy) \), for all \(x, y \in D \). A point \(x \in D \) is a coincidence point (common fixed point) of \(I \) and \(T \) if \(Ix = Tx \) \((x = Ix = Tx) \). The set of coincidence points of \(I \) and \(T \) is denoted by \(C(I,T) \). The mappings \(I \) and \(T \) are called (7) commuting on \(D \) if \(ITx = TIx \) for all \(x \in D \); (8) pointwise \(R \)-weakly commuting on \(D \) if for given \(x \) in \(D \), there exists a real number \(R > 0 \) such that \(d(TIx, ITx) \leq Rd(Tx, Ix) \); (9) weakly compatible if they commute at their coincidence points, i.e., if \(ITx = TIx \) whenever \(Ix = Tx \). Suppose that \(D \) is \(q \)-starshaped with \(q \in F(S) \cap M \) and is both \(T \)- and \(I \)-invariant. Then \(T \) and \(I \) are said to be;
(10) \(R \)-subcommuting on \(D \) if there exists a real number \(R > 0 \) such that \(d(TIx, ITx) \leq \frac{R}{\lambda}d(W(Tx, q, \lambda), Ix) \) for all \(x \in D \) and all \(\lambda \in (0, 1] \); (11) \(R \)-subweakly commuting on \(D \) if for all \(x \in M \), there exists a real number \(R > 0 \) such that \(d(ITx, TIx) \leq R\text{dist}(Ix, \text{seg}[q, Tx]) \); (12) pointwise \(R \)-subcommuting on \(D \) if for given \(x \in D \), there exists a real number \(R > 0 \) such that \(d(TIx, ITx) \leq \frac{R}{\lambda}d(W(Tx, q, \lambda), Ix) \) for all \(k \in (0, 1] \); (13) pointwise \(R \)-subweakly commuting \([18] \) on \(D \) if for given \(x \in D \), there exists a real number \(R > 0 \) such that \(d(ITx, TIx) \leq R\text{dist}(Ix, \text{seg}[q, Tx]) \). Clearly, pointwise \(R \)-subweakly commuting maps are weakly compatible but not conversely in general and \(R \)-subweakly commuting maps are pointwise \(R \)-subweakly commuting but the converse does not hold in general. The mapping \(I \) is called affine on \(D \) if \(I(W(x, q, \lambda)) = W(Ix, Iq, \lambda) \) for all \(x \in D \) and all \(\lambda \in J \). Let \(S \subset X \) and \(\hat{x} \in X \). Then \(P_S(\hat{x}) = \{x \in S : d(x, \hat{x}) = d(\hat{x}, S)\} \) is called the set of best \(S \)-approximants to \(\hat{x} \), where \(d(\hat{x}, S) = \inf\{d(\hat{x}, y) : y \in S\} \) and \(C_S^I(\hat{x}) = \{x \in S : Ix \in P_S(\hat{x})\} \).
In 1963, Meinardus [17] employed the Schauder fixed point theorem to prove a result regarding invariant approximation. In 1979, Singh [20] proved the following extension of the result of Meinardus.

Theorem 1.1. Let \(T \) be a nonexpansive operator on a normed space \(X \), \(M \) a nonempty subset of \(X \), \(T(M) \subset M \) and \(u \in F(T) \). If \(P_M(u) \) is nonempty compact and starshaped, then \(P_M(u) \cap F(T) \neq \emptyset \).

Hicks and Humphries [8] found that Singh’s results remain true if \(T(M) \subset M \) is replaced by \(T(\partial M) \subset M \). In 1988, Sahab, Khan and Sessa [19] established the following result which contains the result of Hicks and Humphries and Theorem 1.1.

Theorem 1.2. Let \(I \) and \(T \) be selfmaps of a normed space \(X \) with \(u \in F(I) \cap F(T) \), \(M \subset X \) with \(T(\partial M) \subset M \), and \(q \in F(I) \). If \(D = P_M(u) \) is compact and \(q \)-starshaped, \(I(D) = D \), \(I \) is continuous and linear on \(D \), \(I \) and \(T \) are commuting on \(D \) and \(T \) is \(I \)-nonexpansive on \(D \cup \{u\} \), then \(P_M(u) \cap F(T) \cap F(I) \neq \emptyset \).

Invariant approximation results for commuting maps due to Al-Thagafi [2] extended and generalized Theorems 1.1-1.2 and the works of [7, 8, 21]. Al-Thagafi results have been further extended by [10, 11, 12, 18] to \(R \)-subweakly commuting and pointwise \(R \)-subweakly commuting.

The aim of this paper is to establish a common fixed point theorem for pointwise \(R \)-subweakly commuting maps in the setup of strongly \(M \)-starshaped metric spaces. As application, invariant approximation results for pointwise \(R \)-subweakly commuting and \(R \)-subcommuting maps are derived. Our results extend and unify the work of Al-Thagafi [2], Dotson [5], Habiniak [7], Hicks and Humphries [8], Hussain and Berinde [9], Hussain, O’Regan and Agarwal [11], Naz [16], Latif [15], Sahab, Khan and Sessa [19] and Singh [20, 21].

The following result will be needed.

Lemma 1.4[1]. Let \(D \) be a subset of a \(M \)-starshaped metric space \((X, d) \) and \(\hat{x} \in X \). Then \(P_D(\hat{x}) \subset \partial D \cap D \).

2. **Main Results**
The following result will be needed.

Theorem 2.1 [18]. Let M be a closed subset of a metric space (X,d), and let I and T be pointwise R-weakly commuting self-mappings of M. If $\text{cl}(T(M)) \subset I(M)$, $\text{cl}(T(M))$ is complete, T is I-continuous and I and T satisfy for all $x, y \in M$ and $0 \leq h < 1$,

$$d(Tx, Ty) \leq h \max \{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)\},$$

(2.1) then $M \cap F(I) \cap F(T)$ is a singleton.

Theorem 2.2. Let S be a q-starshaped subset of a strongly M-starshaped metric space X and $I, T : S \to S$ pointwise R-subweakly commuting mappings such that $\text{cl}T(S) \subset I(S)$. Suppose that $q \in F(I) \cup M$ and I is affine, $\text{cl}T(S)$ is compact, T is I-continuous, I is continuous and I and T satisfy

$$d(Tx, Ty) \leq \max \left\{ \frac{d(Ix, Iy), \text{dist}(Ix, \text{seg}[q, Tx]), \text{dist}(Iy, \text{seg}[q, Ty])}{d(Ix, \text{seg}[q, Ty]), \text{dist}(Iy, \text{seg}[q, Tx])} \right\}$$

(2.2) for all $x, y \in M$. Then $S \cap F(I) \cap F(T) \neq \emptyset$.

Proof. Choose a sequence $\{k_n\} \subset (0, 1)$ such that $k_n \to 1$ as $n \to \infty$. Define for each n, a map $T_nx = W(Tx, q, k_n)$ for each x in S. Since $\text{cl}T(S) \subset I(S)$ and I is affine with $Iq = q$, then $\text{cl}T_n(S) \subset I(S)$. As I and T are pointwise R-subweakly commuting and I is affine with $Iq = q$, so for each $x \in C_q(I,T)$

$$d(T_nIx, IT_nx) = d(W(TIx, q, k_n), I(W(Tx, q, k_n))) = d(W(TIx, q, k_n), W(ITx, q, k_n)) = k_n d(TIx, ITx) = k_n R \text{ dist}(Ix, \text{seg}[q, Tx]).$$

Thus I and T_n are pointwise $k_n R$-weakly commuting for all n. Also by (2.2),

$$d(T_nx, T_ny) = d(W(Tx, q, k_n), W(Ty, q, k_n)) \leq k_n d(Tx, Ty) \leq k_n \max \{d(Ix, Iy), \text{dist}(Ix, \text{seg}[q, Tx]), \text{dist}(Iy, \text{seg}[q, Ty]), \text{dist}(Ix, \text{seg}[q, Ty]), \text{dist}(Iy, \text{seg}[q, Tx])\} \leq k_n \max \{d(Ix, Iy), d(Ix, T_nx), d(Iy, T_ny), d(Ix, T_ny), d(Iy, T_nx)\}.$$
for each $x, y \in S$ and $0 < k_n < 1$. Since $\text{cl}(T(S))$ is compact, each $\text{cl}(T_n(S))$ is compact. By Theorem 2.1, for each $n \geq 1$, there exists $x_n \in S$ such that $x_n = Ix_n = T_n x_n$. The compactness of $\text{cl}(T(S))$ implies that there exists a subsequence $\{Tx_m\}$ of $\{Tx_n\}$ and $y \in \text{cl}T(S)$ such that $Tx_m \to y$ as $m \to \infty$. Since $k_m \to 1$, $x_m = \{W(Tx_m, q, k_m)\}$ converges to y. Since T is continuous, $Tx_m \to Ty$ as $m \to \infty$. Thus $y = Ty$. Since I is also continuous, we have $Iy = y$. Thus $S \cap F(I) \cap F(T) \neq \emptyset$.

Theorem 2.3. Let S be a q-starshaped subset of a strongly M-starshaped metric space X and $I, T : S \to S$ pointwise R-subweakly commuting mappings such that $\text{cl}T(S) \subset I(S)$. Suppose that $q \in F(I) \cup M$ and I is affine, $\text{cl}T(S)$ is compact and T is continuous and I-nonexpansive. Then $S \cap F(I) \cap F(T) \neq \emptyset$.

Proof. We follow the proof of Theorem 2.2 up to the equation $y = Ty$. Since $T(S) \subset I(S)$, we can choose $z \in S$ such that $y = Ty = I z$. Also,

$$d(Tx_m, Tz) \leq d(Ix_m, I z) = d(x_m, I z) = d(x_m, y).$$

Taking limit when $m \to \infty$, we obtain $Ty = Tz$. Thus $y = Ty = Tz = I z$. Hence $C(I, T)$ is nonempty. Since I and T are also weakly compatible, we have $I y = IT z = T I z = Ty = y$. Thus $S \cap F(I) \cap F(T) \neq \emptyset$.

As R-subcommuting mappings are pointwise R-subweakly commuting, so we obtain the following extension of the recent result of Naz ([18], Theorem 4).

Corollary 2.4. Let S be a q-starshaped subset of a strongly M-starshaped metric space X and $I, T : S \to S$ R-subcommuting mappings such that $\text{cl}T(S) \subset I(S)$. Suppose that $q \in F(I) \cup M$, I is affine, $\text{cl}T(S)$ is compact and T is continuous and I-nonexpansive. Then $S \cap F(I) \cap F(T) \neq \emptyset$.

Remark 2.5. Theorems 2.2-2.3 extend and improve Theorem 2.2 of Al-Thagafi [2], Theorem 1 of Dotson [5], Theorem 4 of Habiniak [7], Theorem 2.2 of Hussain and Berinde [9], Theorem 6 of Jungck and Sessa [13] and the corresponding results of Hussain and Jungck [10].

Theorem 2.6. Let X be a strongly M-starshaped metric space, $I, T : X \to X$ two mappings, S be a subset of X such that $\partial S \cap S \subset S$ and $\hat{x} \in F(T) \cap F(I)$. Suppose that $P_S(\hat{x})$ is nonempty closed and q-starshaped with $q \in F(I) \cap M$, I is affine on $P_S(\hat{x})$, $\text{cl}(T(P_S(\hat{x})))$ is compact, and $I(P_S(\hat{x})) = P_S(\hat{x})$.
If T is I-continuous, the pair $\{T, I\}$ is pointwise R-subweakly commuting and continuous on $P_S(\hat{x})$ and satisfy for all $x \in P_S(\hat{x}) \cup \{\hat{x}\}$,

$$d(Tx, Ty) \leq \begin{cases}
 d(Ix, Iu) & \text{if } y = u, \\
 \max\{d(Ix, Iy), dist(Ix, [q, Tx]), dist(Iy, [q, Ty]), \\
 dist(Ix, [q, Ty]), dist(Iy, [q, Tx])\} & \text{if } y \in P_S(\hat{x}),
\end{cases} \quad (2.3)$$

then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Let $x \in P_S(\hat{x})$. Then by Lemma 1.4, $x \in \partial S \cap S$ and so $Tx \in S$ since $T(\partial S \cap S) \subset S$. As T satisfies (2.3) on $P_S(\hat{x}) \cup \{\hat{x}\}$ and $I(P_S(\hat{x})) = P_S(\hat{x})$, we have

$$d(Tx, \hat{x}) = d(Tx, T\hat{x}) \leq d(Ix, I\hat{x}) = d(Ix, \hat{x}) = d(\hat{x}, S).$$

This implies that $Tx \in P_S(\hat{x})$. Thus $T(P_S(\hat{x})) \subset P_S(\hat{x}) = I(P_S(\hat{x}))$. Now Theorem 2.2 implies that $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Theorem 2.7. Let X be a strongly M-starshaped metric space, $I, T : X \rightarrow X$ two mappings, S be a subset of X such that $T(\partial S \cap S) \subset S$ and $\hat{x} \in F(T) \cap F(I)$. Suppose that $P_S(\hat{x})$ is nonempty closed and q-starshaped with $q \in F(I) \cap M$, I is affine on $P_S(\hat{x})$, $cl(T(P_S(\hat{x})))$ is compact, and $I(P_S(\hat{x})) = P_S(\hat{x})$. If T and I are pointwise R-subweakly commuting on $P_S(\hat{x})$, T is continuous and I-nonexpansive on $P_S(\hat{x}) \cup \{\hat{x}\}$, then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Remark 2.8. Theorems 2.6-2.7 extend Theorems 1.1-1.2, Theorem 6 of Naz [16], main results of Singh [20, 21] and many others.

The following result extends Theorem 3.3 [2] and corresponding results in [10] for the case $D = C_S^I(\hat{x})$.

Theorem 2.9. Let X be a strongly M-starshaped metric space, $I, T : X \rightarrow X$ two mappings, S be a subset of X such that $T(\partial S \cap S) \subset I(S) \cap S$ and $\hat{x} \in F(T) \cap F(I)$. Suppose that $P_S(\hat{x})$ is nonempty closed and q-starshaped with $q \in F(I) \cap M$, I is affine on $C_S^I(\hat{x})$, $cl(T(C_S^I(\hat{x})))$ is compact, and $I(C_S^I(\hat{x})) = C_S^I(\hat{x})$. If T and I are pointwise R-subweakly commuting on $C_S^I(\hat{x})$, T is continuous, I-nonexpansive on $C_S^I(\hat{x}) \cup \{\hat{x}\}$, then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Let $x \in C_S^I(\hat{x})$. Since $I(C_S^I(\hat{x})) = C_S^I(\hat{x})$, then $C_S^I(\hat{x}) \subset P_S(\hat{x})$. Thus by Lemma 1.2, $x \in \partial S \cap S$. Since $T(\partial S \cap S) \subset I(S) \cap S$, it follows that $Tx \in I(S)$. So there exists $z \in S$ such that $Tx = Ix$. Thus $z \in C_S^I(\hat{x})$
and hence $cl(T(C^I_S(\hat{x}))) \subset C^I_S(\hat{x})$. Now Theorem 2.2 implies that $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

The following result contains Theorem 3.2 [2].

Theorem 2.10. Let X be a strongly M-starshaped metric space, $I, T : X \to X$ two mappings, S be a subset of X such that $T(\partial S \cap S) \subset S$ and $\hat{x} \in F(T) \cap F(I)$. Suppose that $D = P_S(\hat{x}) \cap C^I_S(\hat{x})$ is nonempty closed and q-starshaped with $q \in F(T) \cap M$, I is affine on D, $clT(D)$ is compact, and $I(D) = D$. If T and I are pointwise R-subweakly commuting on D, T is I-nonexpansive on $D \cup \{\hat{x}\}$ and I is nonexpansive on $P_S(\hat{x}) \cup \{\hat{x}\}$, then $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Proof. Let $x \in D$. Then $x \in P_S(\hat{x})$ and $\|x - \hat{x}\| = dist(\hat{x}, S)$. Proceeding as in the proof of Theorem 2.6, we obtain $Tx \in P_S(\hat{x})$. As I is nonexpansive on $P_S(\hat{x}) \cup \{\hat{x}\}$, we have

$$d(ITx, \hat{x}) = d(ITx, I\hat{x}) \leq d(Tx, T\hat{x}) = d(Ix, I\hat{x}) = d(Ix, \hat{x}) = d(\hat{x}, S).$$

Thus $ITx \in P_S(\hat{x})$. This implies that $Tx \in C^I_S(\hat{x})$, and hence $Tx \in D$. Thus T maps D into itself. Theorem 2.2 further guarantees that $P_S(\hat{x}) \cap F(T) \cap F(I) \neq \emptyset$.

Remarks 2.11. A subset S of a strongly M-starshaped metric space X is said to have property (N) w.r.t. T [9, 11] if,

(i) $T : S \to S$,

(ii) $W(Tx, q, k_n) \in S$, for some $q \in S \cap M$ and a fixed sequence of real numbers $k_n(0 < k_n < 1)$ converging to 1 and for each $x \in S$.

A mapping I is said to have property (C) on a set S with property (N) if $I(W(Tx, q, k_n)) = W(ITx, Iq, k_n)$ for each $x \in S$ and $n \geq 0$.

All results of the paper (Theorem 2.2-Theorem 2.10) remain valid provided I is assumed to be surjective and affineness of I and q-starshapedness of the set S is replaced by the property (C) and property (N) respectively. Consequently, recent results due to Hussain and Berinde [9] and Hussain, O’Regan and Agarwal [11] are improved and extended.

References

Invariant approximation results

Received: May, 2010