An Approximation Model of Continuous Functions

S. Jahedi, M. J. Mehdipour and R. Rafizadeh

Department of Mathematics
Shiraz University of Technology
Shiraz 71555-313, Iran
jahedi@sutech.ac.ir
mehdipour@sutech.ac.ir
math0011@gmail.com

Abstract

Fuzzy transform is a powerful tool for approximation of continuous functions. The paper aims at constructing approximation models on the basis of a generalization of fuzzy partition. We will prove the best approximation properties in the corresponding approximation spaces.

Mathematics Subject Classification: 41A30, 41A45

Keywords: Fuzzy partition, fuzzy transform, approximation theory

1 Introduction

In classical mathematics, various kinds of transforms (Laplace, Fourier,...) are used in methods for construction of approximation models.

Fuzzy transform is a powerful tool for approximation of continuous functions. This method has been developed by I.Perfilieva [2]. By the help of fuzzy transform, ordinary and partial differential equation can be approximately solved [3]. Fuzzy transform, also, can be applied to data compression [4].

This paper generalizes the technique of [1] by generalizing fuzzy partition to weighted partition. In this method we do not limit ourselves to spatial partition by normal fuzzy subsets. We use an arbitrary continuous function ϕ from $[a, b]$ (the universe set) into $(0, 1]$ as a weight and then we construct the weighted fuzzy partition. We introduce weighted fuzzy transform, its inverse, and prove the convergence of approximated function to the original function.
2 Main Results

First of all we introduce the concept of weighted fuzzy partition and weighted fuzzy transform. Let us introduce weighted fuzzy partition of \([a, b]\).

Definition 2.1 Let \(\phi\) be a continuous function from \([a, b]\) into \((0, 1]\) and \(x_0 = x_1 < ... < x_n = x_{n+1}\) be a partition of \([a, b]\) with \(x_1 = a, \ x_n = b\). We say that \(B_1, ..., B_n\) is a weighted fuzzy partition of \([a, b]\) if the following statements hold.

(i) \(B_k \in C([a, b])\), for all \(k = 1, ..., n\).
(ii) \(B_k(x_k) = \phi(x_k)\), for all \(k = 1, ..., n\).
(iii) \(B_k(x) = 0\) whenever \(x \notin (x_{k-1}, x_{k+1})\), for all \(k = 1, ..., n\).
(iv) \(\sum_{k=1}^{n} B_k(x) = \phi(x)\) for all \(x \in [a, b]\).

We say that it is uniform if the nodes \(x_1, ..., x_n\), \(n \geq 3\), are equidistant. This means that \(x_k = a + \Delta(k - 1), k = 1, ..., n\), where \(\Delta = \frac{b-a}{n-1}\).

Let us to introduce the weighted fuzzy transform.

Definition 2.2 Let \(\phi\) be a continuous function from \([a, b]\) into \((0, 1]\) and \(B_1, ..., B_n\) be a weighted fuzzy partition of \([a, b]\). If \(f \in C([a, b])\) then the \(n\)-tuple of real numbers \([F_1, ..., F_n]\) given by
\[
F_k = \frac{\int_{a}^{b} f(x)B_k(x)dx}{\int_{a}^{b} B_k(x)dx}, \quad k = 1, ..., n
\]
will be called weighted fuzzy transform of \(f\) with respect to \(B_1, ..., B_n\).

From linearity of integration, we obtain that weighted fuzzy transform is a linear mapping from \(C([a, b])\) into \(\mathbb{R}^n\) so that
\[
F[\alpha f + \beta g] = \alpha F[f] + \beta F[g]
\]
for \(\alpha, \beta \in \mathbb{R}^n\) and function \(f, g \in C([a, b])\).

We claim that the components of weighted fuzzy transform of a function from \(C([a, b])\) are weighted mean values of its function, where the weights are given by \(B_k\) for \(k = 1, ..., n\). We establish this claim in the following theorem.

Theorem 2.3 Let \(B_1, ..., B_n\) be a weighted fuzzy partition of \([a, b]\) and \(f \in C([a, b])\). Then \(F_k = \min G_k(y)\) where
\[
G_k(y) = \int_{a}^{b} (f(x) - y)^2 B_k(x)\ dx.
\]
defined between values of \(f(a)\) and \(f(b)\).
Proof. Since \((f(x) - y)^2B_k(x)\) is continuously differentiable with respect to \(y\), it follows that
\[
G'(y) = -2 \int_a^b (f(x) - y)B_k(x) \, dx.
\]
So if \(G'(y) = 0\), then
\[
y = \frac{\int_a^b f(x)B_k(x) \, dx}{\int_a^b B_k(x) \, dx}.
\]
Now we only need to note that \(F_k = y = \min G_k(y)\). □

Proposition 2.4 Let \(A_1, ..., A_n\) be a basic function of F-transform on \([a, b]\) and \(\phi\) be a continuous map from \([a, b]\) into \((0, 1]\). Then \(A_1, ..., A_n\) is a weighted fuzzy partition if and only if \(\phi = 1\).

Proof. Let \(x \in [a, b]\). Since \(A_1, ..., A_n\) is a basic function, \(\sum_{k=1}^n A_k(x) = 1\). Now, if \(A_1, ..., A_n\) is a weighted fuzzy partition, then \(\sum_{k=1}^n A_k(x) = \phi(x)\) and so \(\phi(x) = 1\). The converse is clear. □

Following proposition shows that how the basic function in fuzzy transform which has been defined in [1] can be embed into a larger space.

Proposition 2.5 Let \(\phi\) be a continuous function from \([a, b]\) into \((0, 1]\). Then the set of all basic functions can be embeded into the set of all weighted fuzzy partition.

Proof. Let \(A_1, ..., A_n\) be basic functions and suppose that \(a = x_1 < ... < x_n = b\) are nodes of the partition of \([a, b]\). Define
\[
B_1(x) = \begin{cases}
\phi(x_1)A_1(x) & x \in [x_1, x_2] \\
0 & \text{otherwise}
\end{cases}
\]
\[
B_k(x) = \begin{cases}
\phi(x) - \phi(x_{k-1})A_{k-1}(x) & x \in [x_{k-1}, x_k] \\
\phi(x_k)A_k(x) & x \in [x_k, x_{k+1}] \\
0 & \text{otherwise}
\end{cases}
\]
for \(k = 2, ..., n - 1\), and
\[
B_n(x) = \begin{cases}
\phi(x) - \phi(x_{n-1})A_{n-1}(x) & x \in [x_{n-1}, x_n] \\
0 & \text{otherwise}
\end{cases}
\]
Clearly \(B_1, ..., B_n\) is a weighted fuzzy partition of \([a, b]\). □
Recall that the modulus of continuity of f,
\[
\omega(\Delta, f) = \max_{|\delta| \leq \Delta} \max_{x \in [a, b - \delta]} |f(x + \delta) - f(x)|.
\]

Now we investigate the relation between components of weighted fuzzy transform and smoothness of the given function f. On the other hand we want to estimate the components of weighted fuzzy transform of a function with respect to its smoothness.

Theorem 2.6 Let B_1, \ldots, B_n, $n \geq 3$, be a weighted fuzzy partition of $[a, b]$. Then the following statements hold.

(i) $|f(t) - F_1| < \omega(\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}, f)$ for all $t \in [x_1, x_2]$.

(ii) $|f(t) - F_k| < \omega(2\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}, f)$ for all $t \in [x_{k-1}, x_{k+1}]$ and $k = 2, \ldots, n-1$.

(iii) $|f(t) - F_n| < \omega(\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}, f)$ for all $t \in [x_{n-1}, x_n]$.

where $\omega(\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}, f)$ is the modulus of continuity of function f with respect to $\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}$.

Proof. First let us prove the theorem for fix k in the range $1 \leq k \leq n-1$, and let $t \in [x_k, x_{k+1}]$.

\[
|f(t) - F_k| = \left| \int_{x_{k-1}}^{x_{k+1}} \frac{B_k(x)}{B_k(x)} f(t) - \frac{f(x)B_k(x)}{B_k(x)} \, dx \right| \leq \int_{x_{k-1}}^{x_{k+1}} |f(t) - f(x)| \frac{B_k(x)}{B_k(x)} \, dx.
\]

Since $t \in [x_{k-1}, x_{k+1}]$, we have $|t-x| \leq 2\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}$. With $\delta = t-x$

\[
|f(t) - F_k| \leq \max_{|\delta| \leq 2\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}} \max_{x \in [a, b - \delta]} |f(x + \delta) - f(x)| = \omega(2\max_{2 \leq k \leq n}\{|x_k - x_{k-1}|\}, f).
\]

Similarly, (i) and (iii) will be proved. □

Now we introduce the inverse weighted fuzzy transform.

Definition 2.7 The function

\[
f_{F,n}(x) = \sum_{k=1}^{n} F_k \frac{B_k(x)}{\phi(x)}
\]

is called the inverse weighted fuzzy transform of $f \in C([a, b])$ with respect to weighted fuzzy partition B_1, \ldots, B_n.
Theorem 2.8 Let \(f \in C([a, b]) \) and \(\phi \) be a continuous function on \([a, b]\) into \((0, 1]\). Then for any positive \(\varepsilon \) there exist \(n_\varepsilon \) and a weighted fuzzy partition \(B_1, ..., B_{n_\varepsilon} \) such that \(|f(x) - f_{F,n}(x)| < \varepsilon \) for all \(x \in [a, b] \).

Proof. Fix \(\varepsilon \geq 0 \). By the fact that \(f \) is uniformly continuous on \([a,b]\) we can find \(\delta(\varepsilon) \geq 0 \) and \(a = x_1 < ... < x_n = b \) such that \(|f(x) - f(y)| < \varepsilon \) whenever \(x, y \in [x_{k-1}, x_{k+1}] \), and \(2 \leq k \leq n - 1 \).

Choose the weighted fuzzy partition \(B_1, ..., B_n \) on \([a, b]\). Put \(n = n_\varepsilon \), then for \(1 \leq k \leq n_\varepsilon - 1 \) and \(t \in [x_k, x_{k+1}] \),

\[
|f(t) - F_k| = |f(t) - \frac{\int_{x_{k-1}}^{x_{k+1}} f(x)B_k(x)dx}{\int_{x_{k-1}}^{x_{k+1}} B_k(x)dx}|
\leq \frac{\int_{x_{k-1}}^{x_{k+1}} |f(t) - f(x)|B_k(x)dx}{\int_{x_{k-1}}^{x_{k+1}} B_k(x)dx}
< \varepsilon.
\]

Similar computation shows that \(|f(t) - F_{k+1}| < \varepsilon \). By the above argument we have

\[
|f(t) - \sum_{i=1}^{n_\varepsilon} F_i \frac{B_i(t)}{\phi(t)}| = |f(t)\sum_{i=1}^{n_\varepsilon} \frac{B_i(t)}{\phi(t)} - \sum_{i=1}^{n_\varepsilon} F_i \frac{B_i(t)}{\phi(t)}|
\leq \sum_{i=1}^{n_\varepsilon} |f(t) - F_i| \frac{B_i(t)}{\phi(t)}
< \varepsilon \sum_{i=1}^{n_\varepsilon} \frac{B_i(t)}{\phi(t)} = \varepsilon.
\]

So the proof is complete. \(\square \)

References

Received: July, 2010