On Fully Pseudo \((m, n)\)-Stable Modules

Muna J. MohammedAli

Department of Mathematics, College of Science for Women
University of Baghdad, Baghdad, Iraq
a73n79a80@yahoo.com

Abstract

Let \(R\) be a commutative ring with non-zero identity element. For two fixed positive integers \(m\) and \(n\). A right \(R\)-module \(M\) is called fully pseudo \((m, n)\)-stable, if \(\theta(N) \subseteq N\) for each \(n\)-generated submodule \(N\) of \(M^m\) and \(R\)-monomorphism \(\theta : N \rightarrow M^m\). In this paper we give some characterization theorems and properties of fully pseudo \((m, n)\)-stable modules which generalize the results of fully pseudo stable modules.

Mathematics Subject Classification(2000): 13C99, 13C11

Keywords: fully \((m, n)\)-stable module, fully pseudo \((m, n)\)-stable module, \((m, n)\)-multiplication module.

1 Introduction

Throughout, \(R\) is a commutative ring with non-zero identity and all modules are unitary. We use the notation \(R^{m \times n}\) for the set of all \(m \times n\) matrices over \(R\). For \(A \in R^{m \times n}\), \(A^T\) will denote the transpose of \(A\). In general, for an \(R\)-module \(N\), we write \(N^{m \times n}\) for the set of all formal \(m \times n\) matrices whose entries are elements of \(N\). Let \(M\) be a right \(R\)-module and \(N\) be a left \(R\)-module. For \(x \in M^{l \times m}\), \(s \in R^{m \times n}\) and \(y \in N^{n \times k}\), under the usual multiplication of matrices, \(xs\) (resp. \(sy\)) is a well defined element in \(M^{l \times m}\) (resp. \(N^{n \times k}\)). If \(X \in M^{l \times m}\), \(S \in R^{m \times n}\) and \(Y \in N^{n \times k}\), define

\[
\ell_{M^{l \times m}}(S) = \{u \in M^{l \times m} : us = 0, \forall s \in S\}
\]

\[
r_{N^{n \times k}}(S) = \{v \in N^{n \times k} : sv = 0, \forall s \in S\}
\]

\[
\ell_{R^{m \times n}}(Y) = \{s \in R^{m \times n} : sy = 0, \forall y \in Y\}
\]

\[
r_{R^{m \times n}}(X) = \{s \in R^{m \times n} : xs = 0, \forall x \in X\}
\]
We will write $N^n = N^{1 \times n}$, $N_n = N^{n \times 1}$. Fully pseudo stable module have been discussed in [1], an R-module M is called fully pseudo stable, if $\theta(N) \subseteq N$ for each submodule N of M and R-monomorphism θ from N into M. It is an easy matter to see that M is fully pseudo stable, if and only if $\theta(xR) \subseteq xR$ for each x in M and R-monomorphism $\theta : xR \to M$. In this paper, for two fixed positive integers m and n, we introduce the concepts of fully pseudo (m, n)-stable modules, if and only if the distinct n-generated submodules of M^m are not isomorphic.

2 Results

Definition 2.1 An R-module M is called fully pseudo (m, n)-stable, if $\theta(N) \subseteq N$ for each n-generated submodule N of M^m and R-monomorphism $\theta : N \to M^m$. The ring R is fully pseudo (m, n)-stable, if R is fully pseudo (m, n)-stable as R-module.

An R-module M is fully pseudo (m, n)-stable, if and only if for each R-monomorphism $\theta : N(= \sum_{i=1}^{n} \alpha_i R) \to M^m$ (where $\alpha_i \in M^m$) and each $w \in N$, there exists $t = (t_1, \ldots, t_n) \in R^n$ such that $\theta(w) = \sum_{i=1}^{n} \alpha_i t_i = (\alpha_1, \ldots, \alpha_n)t^T$, if $r = (r_1, \ldots, r_n) \in R^n$, then $\theta((\alpha_1, \ldots, \alpha_n)r^T) = (\alpha_1, \ldots, \alpha_n)t^T$.

It is clear that M is fully pseudo $(1, 1)$-stable, if and only if M is fully pseudo stable.

It is an easy matter to see that an R-module M is fully pseudo (m, n)-stable, if and only if it is fully pseudo (m, q)-stable for all $1 \leq q \leq n$, if and only if it is fully pseudo (p, n)-stable for all $1 \leq p \leq m$, if and only if it is fully pseudo (p, q)-stable for all $1 \leq p \leq m$ and $1 \leq q \leq n$.

Recall that an R-module M is called fully (m, n)-stable, if $\theta(N) \subseteq N$ for each n-generated submodule N of M^m and R-homomorphism $\theta : N \to M^m$. The ring R is fully (m, n)-stable, if R is fully (m, n)-stable as R-module. It is clear that every fully (m, n)-stable is fully pseudo (m, n)-stable. But the converse is not true.

Recall that an R-module M is uniform if any non-zero submodules of M has non-zero intersection.

Proposition 2.2 Every uniform fully pseudo (m, n)-stable R-module is fully (m, n)-stable
proof. let M be fully pseudo (m, n)-stable module. For any n-generated submodule N of M^m and R-homomorphism $\theta : N \to M^m$. If $ker\theta = 0$, nothing to prove. Otherwise let $x \in ker \theta \cap ker(I_N + \theta)$, then $\theta(x) = 0$ and $(I_N + \theta)(x) = 0$. Now $x = x + \theta(x) = (I_N + \theta)(x) = 0$. Thus $ker \theta \cap ker(I_N + \theta) = 0$. But M is uniform, hence $ker(I_N + \theta) = 0$, that is $(I_N + \theta) : N \to M^m$ is an R-monomorphism. Since M is fully pseudo (m, n)-stable, then $(I_N + \theta)(N) \subseteq (N)$, hence $\theta(N) \subseteq (N)$.

Corollary 2.3 [1, Proposition 2.2] Every uniform fully pseudo stable R-module is fully stable module.

Theorem 2.4 An R-module M is fully pseudo (m, n)-stable, if and only if distinct n-generated submodules of M^m are not isomorphic.

proof. suppose that distinct n-generated submodules of M^m are not isomorphic, and there exists an n-generated submodule N of M^m and R-monomorphism $\theta : N \to M^m$ such that $\theta(N) \not\subseteq N$, then N and $\theta(N)$ are two distinct n-generated submodules of M^m. By assumption, then $\theta(N)$ is not isomorphic to N which is an absurd. Conversely, suppose that M is a fully pseudo (m, n)-stable and M has two n-generated submodules N_1 and N_2 such that $N_1 \not\subseteq N_2$. No loss of generality if it is assumed that $N_1 \not\subseteq N_2$. There exists a non-zero element x in N_1 not in N_2. Let $\theta : N_1 \to N_2$ be an isomorphism, consider the following two R-monomorphism $i_{N_1} \circ \theta : N_1 \to M^m$ and $i_{N_1} \circ \theta^{-1} : N_2 \to M^m$. Since M is fully pseudo(m, n)-stable, then $(i_{N_2} \circ \theta)(N_1) \subseteq N_1$ and $(i_{N_1} \circ \theta^{-1})(N_2) \subseteq N_2$. Now $x = (i_{N_1} \circ \theta^{-1} \circ i_{N_2} \circ \theta)(x) \in N_2$ which is contradiction.

Corollary 2.5 [1, Proposition 2.4] An R-module M is fully pseudo-stable, if and only if distinct cyclic submodules of M are not isomorphic.

Corollary 2.6 Let M be a uniform R-module. Then M is fully (m, n)-stable, if and only if distinct n-generated submodules of M^m are not isomorphic.

In [7], prove that, let M be a right R-module and I_R an n-generated submodule of R^m_R, then $\ell_{M^n}(I) \cong Hom_R(R^n/I, M)$.

Theorem 2.7 Let M be an R-module. Then the following statement are equivalent.
1. \(M \) is fully \((m, n)\)-stable.

2. distinct \(n \)-generated submodules of \(M^m \) are not isomorphic and \(\sum_{i=1}^{n} \alpha_i R \cong \text{Hom}_R(\sum_{i=1}^{n} \alpha_i R, M) \) for each \(n \)-elements subset \(\{\alpha_1, \ldots, \alpha_n\} \) of \(M^m \)

proof. Assume that \(M \) is fully \((m, n)\)-stable \(R \)-module, then the distinct \(n \)-generated submodules of \(M^m \) are not isomorphic. By \([2, \text{proposition (2.9)}]\), for each \(n \)-element subset \(\{\alpha_1, \ldots, \alpha_n\} \subset M^m \), we have

\[
\ell_{M^m}(\alpha_1 R + \ldots + \alpha_n R) \cong \text{Hom}_R(\sum_{i=1}^{n} \alpha_i R, M)
\]

Conversely, assume that distinct \(n \)-generated submodules of \(M^m \) are not isomorphic and \(\alpha_1 R + \ldots + \alpha_n R \cong \text{Hom}_R(\sum_{i=1}^{n} \alpha_i R, M) \). By \([6]\), we have

\[
\ell_{M^m}(r_{R^m}(\alpha_1 R + \ldots + \alpha_n R)) \cong \text{Hom}_R((\alpha_1 R + \ldots + \alpha_n R), M)
\]

Hence \(M \) is fully \((m, n)\)-stable.

Corollary 2.8 \([1, \text{Theorem 2.8}]\) Let \(M \) be an \(R \)-module. Then the following statement are equivalent.

1. \(M \) is fully-stable.

2. distinct cyclic submodules of \(M \) are not isomorphic and \(xR \cong \text{Hom}_R(xR, M) \) for each \(x \in M \)

Corollary 2.9 Let \(M \) be an \(R \)-module. Then the following statement are equivalent.

1. \(M \) is a fully \((m, n)\)-stable.

2. \(M \) is a fully pseudo \((m, n)\)-stable and \(\sum_{i=1}^{n} \alpha_i R \cong \text{Hom}_R(\sum_{i=1}^{n} \alpha_i R, M) \) for each \(n \)-elements subset \(\{\alpha_1, \ldots, \alpha_n\} \) of \(M^m \)

Proposition 2.10 Let \(M \) be an \(R \)-module. Then the following statement are equivalent.

1. distinct \(n \)-generated submodules of \(M^m \) are not isomorphic.

2. \(r_{R^m}\{\alpha_1, \ldots, \alpha_n\} = r_{R^m}\{\beta_1, \ldots, \beta_n\} \) for each \(n \)-element two subsets \(\{\alpha_1, \ldots, \alpha_n\} \) and \(\{\beta_1, \ldots, \beta_n\} \) of \(M^n \) implies that \(\alpha_1 R + \ldots + \alpha_n R = \beta_1 R + \ldots + \beta_n R \)
proof. Assume that (1) is true. Define \(\theta : \alpha_1 R + \cdots + \alpha_n R \to \beta_1 R + \cdots + \beta_n R \) by \(\theta(\sum_{i=1}^n \alpha_i r_i) = \sum_{i=1}^n \beta_i r_i \) for each \(r_i \in R \) and \(i = 1, \ldots, n \). Because \(r_{R_n}\{\alpha_1, \ldots, \alpha_n\} = r_{R_n}\{\beta_1, \ldots, \beta_n\} \), then \(\theta \) is an isomorphism, then by (1), we have \(\alpha_1 R + \cdots + \alpha_n R = \beta_1 R + \cdots + \beta_n R \). Conversely, assume that (2) holds, and there exists two \(n \)-generated submodules \(\alpha_1 R + \cdots + \alpha_n R \neq \beta_1 R + \cdots + \beta_n R \) with \(\alpha_1 R + \cdots + \alpha_n R \cong \beta_1 R + \cdots + \beta_n R \), then without lose of generality there exists an element \(w \in \alpha_1 R + \cdots + \alpha_n R \) and \(w \notin \beta_1 R + \cdots + \beta_n R \). Let \(f : \alpha_1 R + \cdots + \alpha_n R \to \beta_1 R + \cdots + \beta_n R \) be isomorphism. Now \(w \neq f(w) \), otherwise \(w \in \beta_1 R + \cdots + \beta_n R \). We claim that \(r_{R_n}(w) = r_{R_n}(f(w)) \). For let \(\eta \in r_{R_n}(w) \), then \(w\eta = 0 \), hence \(f(w)\eta = 0 \), thus \(r_{R_n}(w) \subseteq r_{R_n}(f(w)) \). Let \(\zeta \in r_{R_n}(f(w)) \), then \(0 = f(w)\zeta = f(w\zeta) \), \(w\zeta \in \ker(f) = 0 \), \(w\zeta = 0 \) or \(\zeta \notin r_{R_n}(w) \). Therefore \(r_{R_n}(w) = r_{R_n}(f(w)) \). But \(Rw \neq Rf(w) \) which is a contradiction.

Corollary 2.11 [1, Proposition 2.11]Let \(M \) be an \(R \)-module . Then the following statements are equivalent.

1. distinct cyclic submodules are not isomorphic.
2. \(r_R(x) = r_R(y) \) implies \(Rx = Ry \) for each \(x, y \in M \)

S. K. Jain and S. Singh in[4] introduced the concept of a pseudo-injective module . An \(R \)-module \(M \) is said to be pseudo-injective, if each \(R \)-monomorphism \(\theta : N \to M \) of any submodule \(N \) of \(M \) can be extended to an \(R \)-endomorphism of \(M \). An \(R \)-module \(M \) is said to be principally pseudo-injective, if each \(R \)-monomorphism from cyclic submodule \(N \) of \(M \) can be extended to an \(R \)-endomorphism of \(M \) [4].

Lemma 2.12 Every fully pseudo-stable module is principally pseudo-injective module.

proof. Is clear

Motivated by concept of principally pseudo-injective, we introduce the following definition.

Definition 2.13 An \(R \)-module \(M \) is called \((m, n)\)-pseudo injective, if each \(R \)-monomorphism from \(n \)-generated submodule of \(M^m \) to \(M \) can be extended to an \(R \)-homomorphism from \(M^m \) to \(M \).

It is clear that \(M \) is principally pseudo-injective, if and only if \(M \) is \((1, 1)\)-pseudo injective. An \(R \)-module \(M \) is called \(n \)-pseudo injective if it is \((1, n)\)-pseudo injective for all positive integers \(n \).
It is an easy matter to see that an R-module M is \((m, n)\)-pseudo injective, if and only if it is \((m, q)\)-pseudo injective for all \(1 \leq q \leq n\), if and only if it is \((p, n)\)-pseudo injective for all \(1 \leq p \leq m\), if and only if it is \((p, q)\)-pseudo injective for all \(1 \leq p \leq m\) and \(1 \leq q \leq n\).

In [9] prove the following proposition. Write \(A_m = \{ n \in M \mid r_R(n) = r_R(m) \}\) and \(B_m = \{ \alpha \in S \mid \kappa \alpha \cap mR = 0 \}\) for each \(m \in M\).

Proposition 2.14 Let \(M\) be an R-module. The following statements are equivalent for each \(m \in M\):

1. \(M\) is principally pseudo injective
2. \(A_m = B_m\)
3. If \(A_m = A_n\) then \(B_m m = B_n n\).
4. For every R-monomorphism \(\alpha : 0 \to mR \to M\) and \(\beta : 0 \to mR \to M\), there exists \(\gamma \in \text{End}(M_R)\) such that \(\alpha = \gamma \beta\).

Let \(M\) be an R-module, \(\alpha_i\) be a non-zero element in \(M^n\), \(i = 1, \ldots, m\). We write \(A_{\alpha_i} = \{ \beta_i \in M^n \mid r_{R^n}(\beta_i) = r_{R^n}(\alpha_i) \}\) and \(B_{\alpha_i} = \{ c \in S_n \mid r_{R^n}(c) \cap \alpha_i R = 0 \}\).

Theorem 2.15 Let \(M\) be an R-module. The following statements are equivalent:

1. \(M\) is \((m, n)\)-pseudo injective.
2. \(A_{\alpha_i} = B_{\alpha_i} \alpha_i\), for each \(\alpha_i \in M^n\).
3. \(A_{\alpha_i} = A_{\beta_i}\), then \(B_{\alpha_i} \alpha_i = B_{\beta_i} \beta_i\).
4. For every R-monomorphism \(\theta : \sum_{i=1}^n \alpha_i R \to M^m\) and \(\varphi : \sum_{i=1}^n \alpha_i R \to M\), there exists \(\gamma : M^m \to M\) such that \(\theta = \gamma \varphi\).

proof. (1)\(\Rightarrow\)(2) \(\theta : \alpha_1 R + \ldots + \alpha_n R \to M\) is well-defined by \(\theta(\sum_{i=1}^n \alpha_i r_i) = \sum_{i=1}^n \beta_i r_i\), for each \(r_i \in R\). \((m, n)\)-pseudo-injectivity of \(M\) implies there exists \(\gamma : M^m \to M\) such that \(\theta = \gamma i\). In particular, there is \(c = (c_1, \ldots, c_n) \in S_n\) with \(\beta_i = \sum_{k=1}^n c_k \alpha_i\), \(i = 1, \ldots, n\). If \(\sum_{i=1}^n \alpha_i r_i \in r_{R^n}(c) \cap \alpha_i R\), then

\[
\gamma(\sum_{i=1}^n \alpha_i r_i) = \theta(\sum_{i=1}^n \alpha_i r_i) = \sum_{i=1}^n \beta_i r_i = \sum_{i=1}^n (\sum_{k=1}^n c_k \alpha_i) r_i
\]
It is clear that pseudo-injective, right \(r \) frequently, \(\sum \) then \(r = \sum s_k \alpha_i \) where \(s = (s_1, \ldots, s_n) \in S_n \) and \(t \in r_{R^n(s)} \cap \alpha_i R = 0 \). It is clear that \(r_{R^n}(\{\alpha_1, \ldots, \alpha_n\}) \subseteq r_{R^n}(\{s\alpha_1, \ldots, s\alpha_n\}) \).

If \(t \in r_{R^n}(\{s_1\alpha_1, \ldots, s_n\alpha_n\}) \), then \(\sum_{k=1}^nt_k(\sum_{i=1}^ns_i\alpha_i) \) and hence \(\sum_{k=1}^nt_k\alpha_i \in r_{R^n(s)} \cap \alpha_i R \), so \(\sum_{i=1}^nt_i\alpha_i = 0 \). Thus \(r_{R^n}(\{\alpha_1, \ldots, \alpha_n\}) = r_{R^n}(\{\beta_1, \ldots, \beta_n\}) \).

The other equivalence in (2) follows by symmetry.

(2)\(\Leftrightarrow(2')\) and (3)\(\Leftrightarrow(3')\) are trivial.

(2) \(\Rightarrow\) (3) Let \(A_{\alpha_i} = A_{\beta_i} \). Then \(A_{\alpha_i} = B_{\alpha_i}, A_{\beta_i} = B_{\beta_i} \). So \(B_{\alpha_i} \subseteq B_{\beta_i} \).

(3) \(\Rightarrow\) (4) For each \(\alpha_i \in M^n, i = 1, \ldots, n \), let \(\theta : \sum_{i=1}^n\alpha_i R \to M^n \) and \(\varphi : \sum_{i=1}^n\alpha_i R \to M \) be \(R \)-monomorphisms. Then by (3), \(r_{R^n}(\varphi\alpha_i) = r_{R^n}(\theta\alpha_i) \). So \(A_{\alpha_i} = A_{\varphi\alpha_i}, B_{\alpha_i} = B_{\varphi\alpha_i} \). Because \(r_{R^n}(1_{M^n}) \cap \alpha_i R = 0, 1_{M^n} \in B_{\alpha_i} \).

Then \(\theta\alpha_i \in B_{\varphi\alpha_i} \). There exists \(\gamma \in B_{\varphi\alpha_i} \) such that \(\theta = \gamma\varphi \).

(4) \(\Rightarrow\) (1) Let \(\varphi = i\sum_{i=1}^n\alpha_i R \). It is clear.

Theorem 2.16 Given an \(R \)-module \(M_R \). Then \(M_R \) is \((m, n)\)-pseudo injective, if and only if the right \(R^{m \times n} \)-module \(M^{m \times n} \) is principally pseudo-injective.

proof. \(\Rightarrow\) Let \(U, V \in M^{m \times n} \) with \(r_{R^{m \times n}}(U) = r_{R^{m \times n}}(V) \) and write

\[
V = \begin{pmatrix}
V_1 \\
\vdots \\
V_m
\end{pmatrix}
\]

Then for each \(i = 1, \ldots, m \), \(r_{R^{m \times n}}(U) = r_{R^{m \times n}}(V_i) \). Consequently, \(r_{R^n}(U) = r_{R^n}(V_i) \). Since \(M \) is \((m, n)\)-pseudo injective, by theorem (2.15), \(B_U = B_{V_i} \), put \(B_V = \begin{pmatrix}
B_{V_1} & V_1 \\
\vdots & \ddots \\
B_{V_m} & V_m
\end{pmatrix} \). So \(A_U = B_V \). Therefore the right \(R^{m \times n} \)-module \(M^{m \times n} \) is principally pseudo-injective by [9, proposition (2.1)].

\(\Leftarrow\) Suppose that \(\alpha_i, \beta_i \in M^n \) and \(r_{R^n}(\alpha_i) = r_{R^n}(\beta_i) \). Let \(U = \begin{pmatrix} \alpha_i \\ 0 \end{pmatrix} \) and \(V = \begin{pmatrix} \beta_i \\ 0 \end{pmatrix} \in M^{m \times n} \). Then \(r_{R^{m \times n}}(V) = r_{R^{m \times n}}(U) \). Since \(M_{R^{m \times n}}^{m \times n} \) is principally pseudo-injective, \(A_V = A_U \). Then \(M \) is \((m, n)\)-pseudo-injective by theorem(2.15).
Let M be an R-module, α_i be a non-zero element in M^n, $i = 1, \ldots, m$ and t in R^n. We write $W(\alpha_i) = \{r \in R_n \mid \ell_{M^n}(r) \cap \alpha_i R = 0\}$.

Theorem 2.17 The following are equivalent for an R-module M

1. M is fully pseudo (m,n)-stable.

2. $r_{R_n}(\{\alpha_1, \ldots, \alpha_n\}) = r_{R_n}(\{\beta_1, \ldots, \beta_n\})$ if and only if $\beta_i \in \alpha_i W(\alpha_i)$ if and only if $\alpha_i \in \beta_i W(\beta_i)$ for each two n-element subsets $\{\alpha_1, \ldots, \alpha_n\}$ and $\{\beta_1, \ldots, \beta_n\}$ of M^n.

2' $r_{R_n}(A) = r_{R_n}(B)$ if and only if $B \in AW(A)$ if and only if $A \in BW(B)$ for each $A, B \in M^{m \times n}$

3. For any R-monomorphisms $\theta, \varphi : \alpha_1 R + \ldots + \alpha_n R \rightarrow M^m$ where $\alpha_i \in M^n$, there is $t \in R^n$ such that $\theta = \varphi \cdot t$.

proof. (1)\Rightarrow(2) $\theta : \alpha_1 R + \ldots + \alpha_n R \rightarrow M^m$ is well-defined by $\theta(\sum_{i=1}^n \alpha_i r_i) = \sum_{i=1}^n \beta_i r_i$, for each $r_i \in R$. Full pseudo (m,n)-stability of M implies $\theta(\sum_{i=1}^n \alpha_i R) \subseteq \sum_{i=1}^n \alpha_i R$. In particular, there is $t = (t_1, \ldots, t_n) \in R_n$ with $\beta_i = \sum_{i=1}^n \alpha_i t_k$, $i = 1, \ldots, n$. If $\sum_{i=1}^n \alpha_i r_i \in \ell_{M^n}(t) \cap \alpha_i R$, then $0 = \sum_{i=1}^n (\sum_{i=1}^n \alpha_i r_i) t_k = \sum_{i=1}^n (\sum_{i=1}^n \alpha_i t_k) r_i = \sum_{i=1}^n \beta_i r_i = \theta(\sum_{i=1}^n \alpha_i r_i)$, so $\sum_{i=1}^n \alpha_i r_i = 0$, thus $t \in W(\alpha_i)$ and hence $\beta_i \in \alpha_i W(\alpha_i)$. Conversely if $\beta_i \in \alpha_i W(\alpha_i)$, then $\beta_i = \sum_{k=1}^n \alpha_i s_k$ where $s = (s_1, \ldots, s_n) \in R_n$ and $\ell_{M^n}(s) \cap \alpha_i R = 0$. It is clear that $r_{R_n}(\{\alpha_1, \ldots, \alpha_n\}) \subseteq r_{R_n}(\{\alpha_1 s, \ldots, \alpha_n s\})$. If $t \in r_{R_n}(\{\alpha_1 s_1, \ldots, \alpha_n s_n\})$, then $\sum_{k=1}^n (\sum_{i=1}^n \alpha_i s_i) t_k$ and hence $\sum_{k=1}^n \alpha_i t_k \in \ell_{M^n}(s) \cap \alpha_i R$, so $\sum_{i=1}^n \alpha_i t_k = 0$. Thus $r_{R_n}(\{\alpha_1, \ldots, \alpha_n\}) = r_{R_n}(\{\beta_1, \ldots, \beta_n\})$.

The other equivalence in (2) follows by symmetry.

(2) \Leftrightarrow (2') Is trivial

(2) \Rightarrow (3) Let $\theta, \varphi : \alpha_1 R + \ldots + \alpha_n R \rightarrow M^m$ be two R-monomorphisms. Then

$$r_{R_n}(\{\alpha_1, \ldots, \alpha_n\}) = r_{R_n}(\{\beta_1, \ldots, \beta_n\}).$$

By the hypothesis, $\theta(\alpha_i) \in \varphi(\alpha_i) \varphi(\alpha_i)$. So there is $t \in W(\varphi(\alpha_i))$, such that $\theta(\alpha_i) = \sum_{i=1}^n \varphi(\alpha_i) t_i = \sum_{i=1}^n \varphi(\alpha_i) t_i$. Also by symmetry there is $s \in R_n$ such that $\varphi = \theta s$.

(3) \Rightarrow (1) For each $\alpha_i \in M^n, i = 1, \ldots, m$, let $f : \alpha_1 R + \ldots + \alpha_n R \rightarrow M^n$ be an R-monomorphism. Then by (3), there is an element $t \in R^n$ such that $f = it$ where i is the inclusion map of $\alpha_1 R + \ldots + \alpha_n R$ into M^n and hence $f(\alpha_1 R + \ldots + \alpha_n R) \subseteq \alpha_1 R + \ldots + \alpha_n R$.

Theorem 2.18 Given an R-module M_R. Then M_R is fully pseudo (m,n)-stable, if and only if the right $R^{n\times n}$-module $M^{m\times n}$ is fully pseudo-stable.

proof. The proof is similar to the proof of theorem (2.16)

Theorem 2.19 Given an R-module M_R. If M_R is fully pseudo-(m,n)-stable, then M is (m,n)-pseudo injective.

The following proposition is the converse of theorem (2.19)

Proposition 2.20 Let M be an (m,n)-multiplication R-module. If M is (m,n)-pseudo injective, then M is a fully pseudo (m,n)-stable module.

proof. The proof is essentially the same as that of [2, proposition (2.17)] by replacing the R-homomorphism $f : N \rightarrow M^m$ by R-monomorphism.

References

[7] Zhang, X., Chen J. and Zhang J., *On (m, n) injective modules and (m, n)-coherent rings*, *Algebra Colloquium* 12(1), (2005), 149-160.

Received: March, 2009