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1. Introduction

In 2005, a new structure of generalized metric spaces was introduced by
Zead Mustafa and Brailey Sims as appropriate notion of generalized metric
space called G-metric spaces (see [3]) as follows.

Definition 1. ([3]) Let X be a nonempty set, and let G : X × X × X → R+,
be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) ; for all x, y ∈ X, with x �= y,

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z �= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three vari-
ables), and

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X, (rectangle in-
equality ).

Then the function G is called generalized metric, or, more specifically G-metric
on X, and the pair (X, G) is called a G-metric space.(Throughout this paper
we denote R+ the set of all positive real numbers and N the set of all natural
numbers ).

Definition 2. ([3]) Let (X, G) be a G-metric space, let (xn) be a sequence of
points of X, a point x ∈ X is said to be the limit of the sequence (xn) if
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limn,m→∞ G(x, xn, xm) = 0, and one say that the sequence (xn) is G-convergent
to x.

Thus, that if xn −→ 0 in a G-metric space (X, G), then for any ε > 0, there
exists N ∈ N such that G(x, xn, xm) < ε, for all n, m ≥ N .

Proposition 1. ([3]) Let (X, G) be a G-metric space. Then the following are
equivalent.

(1) (xn) is G-convergent to x.
(3) G(xn, xn, x) → 0, as n → ∞.
(4) G(xn, x, x) → 0, as n → ∞.
(5) G(xm, xn, x) → 0, as m, n → ∞.

Definition 3. ([3]) Let (X, G) be a G-metric space. A sequence (xn) is called
G-Cauchy if given ε > 0, there is N ∈ N such that G(xn, xm, xl) < ε, for all
n, m, l ≥ N , that is, if G(xn, xm, xl) −→ 0 as n, m, l −→ ∞.

Proposition 2. ([3]) If (X, G) is a G-metric space, then the following are
equivalent.

1. The sequence (xn) is G-Cauchy.
2. For every ε > 0, there exists N ∈ N such that G(xn, xm, xm) < ε, for all

n, m ≥ N .

Definition 4. ([3]) Let (X, G) and (X ′, G′) be two G-metric spaces, and let
f : (X, G) → (X ′, G′) be a function. Then f is said to be G-continuous at a
point a ∈ X if and only if given ε > 0, there exists δ > 0 such that x, y ∈
X; and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε. A function f is G-
continuous on X if and only if it is G-continuous at all a ∈ X.

Proposition 3. ([3]) Let (X, G) and (X
′
, G

′
) be two G-metric spaces. Then

a function f : X −→ X
′
is G-continuous at a point x ∈ X if and only if it

is G-sequentially continuous at x; that is, whenever (xn) is G-convergent to
x we have (f(xn)) is G-convergent to f(x).

Proposition 4. ([3]) Let (X, G) be a G-metric space. Then the function
G(x, y, z) is jointly continuous in all three of its variables.

Definition 5. ([3]) A G-metric space (X, G) is said to be G-complete ( or
complete G-metric ) if every G-Cauchy sequence in (X, G) is G-convergent in
(X, G).

Definition 6. ([3]) A G-metric space (X, G) is called symmetric G-metric
space if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

The following fixed point theorem for a contractive mapping on G-metric
space has been proved in [2].

Theorem 1.1. ([2]) Let (X, G) be a complete G-metric space and T : X → X
be a mapping satisfies the following condition for all x, y, z ∈ X

G(Tx, Ty, Tz) ≤ kG(x, y, z)(1.1)
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where k ∈ [0, 1). Then T has a unique fixed point.

Theorem 1.2. ([2]) Let (X, G) be a complete G-metric space and T : X → X
be a mapping satisfies the following condition for all x, y ∈ X

G(Tx, Ty, Ty) ≤ kG(x, y, y)(1.2)

where k ∈ [0, 1). Then T has a unique fixed point.

In [2] we showed that a mapping satisfies the Condition (1.1) will satisfy
Condition (1.2) when k ∈ [0, 1), where the converse is true only when k ∈ [0, 1

2
).

However, when k ∈ [1
2
, 1), we showed in a counter example that Condition

(1.2) need not imply Condition (1.1)(for details see [2]).

Definition 7. Let (X, G) be a G-metric space and T be a self mapping on X.
Then T is called expansive mapping if there exists a constant a > 1 such that
for all x, y, z ∈ X, we have

G(Tx, Ty, Tz) ≥ aG(x, y, z).

The following example shows that expansive mapping on G-metric space
need not be G-continuous.

Example 1. Let T : (R, G) −→ (R, G) be defined by

T (x) =

{
5x ; if x ≤ 3
5x + 2; if x > 3

}

where G(x, y, z) = max{|x − y|, |y − z|, |x − z|}. Then (R, G) is a complete
G-metric space and T is expansive mapping where T is not G-continuous.

2. Main Results

We start our work by proving the following theorem:

Theorem 2.1. Let (X, G) be a complete G-metric space. If there exists a
constant a > 1 and a surjective self mapping T on X, such that for all x, y, z ∈
X

G(Tx, Ty, Tz) ≥ aG(x, y, z),(2.1)

then T has a unique fixed point.

Proof. Under the assumption, if Tx = Ty, then 0 = G(Tx, Ty, Ty) ≥ aG(x, y, y),
which implies that G(x, y, y) = 0, and hence x = y. So, T is injective and in-
vertible.

Let h be the inverse mapping of T . Then

G(x, y, z) = G(T (hx), T (hy), T (hz)) ≥ aG(hx, hy, hz).

Thus, for all x, y, z ∈ X, we have G(hx, hy, hz) ≤ kG(x, y, z), where k = 1
a
.

Applying Theorem (1.1), we conclude that the inverse mapping h has a unique
fixed point u ∈ X; h(u) = u. But, u = T (h(u)) = T (u). This gives that u is
also a fixed point of T .
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Suppose there exists another fixed point v �= u such that Tv = v, then
Tv = v = T (h(v)) = h(Tv), so Tv is another fixed point for h. By uniqueness
we conclude that u = Tv = v, which implies that u is a unique fixed point of
T .

Theorem 2.2. Let (X, G) be a complete G-metric space. If there exists a
constant c > 1 and a surjective self mapping T on X, such that for all x, y ∈ X

G(Tx, Ty, Ty) ≥ cG(x, y, y),(2.2)

then T has a unique fixed point.

Proof. Under the assumption, we see that T is injective, and hence T is in-
vertible. Let h be the inverse mapping of T . So,

G(x, y, y) = G(T (hx), T (hy), T (hy)) ≥ cG(hx, hy, hy).

Then, for all x, y ∈ X we have G(hx, hy, hy) ≤ kG(x, y, y), where k = 1
c
.

Applying Theorem (1.2) on the inverse mapping h, and use argument similar
to that in proof Theorem (2.1), we conclude that T has unique fixed point

Corollary 1. Let (X, G) be a complete G-metric space. If there exists a con-
stant k > 1 and a surjective self mapping on X, such that for all x, y, z ∈ X

G(Tx, Ty, Tz) ≥ k{G(x, z, z) + G(y, z, z)},(2.3)

then T has a unique fixed point.

Proof. Follows from Theorem (2.2), by taking z = y in Condition (2.3).

Theorem 2.3. Let (X, G) be a complete G-metric space, and let T : X −→ X
be a surjective mapping satisfying the following condition for all x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k max

⎧⎨
⎩

G(x, z, z) + G(y, z, z),
G(z, y, y) + G(x, y, y),
G(z, x, x) + G(y, x, x)

⎫⎬
⎭(2.4)

where k > 1. Then T has a unique fixed point.

Proof. Condition (2.4) implies that T is injective and therefor invertible.
Let h be the inverse mapping of T . By Condition (2.4) for all x, y, z ∈ X,

we have,

G(x, y, z) = G(T (hx), T (hy), T (hz)) ≥ k max

⎧⎨
⎩

G(hx, hz, hz) + G(hy, hz, hz),
G(hz, hy, hy) + G(hx, hy, hy),
G(hz, hx, hx) + G(hy, hx, hx)

⎫⎬
⎭ .

(2.5)

But, by (G5) we have,

max

⎧⎨
⎩

G(hx, hz, hz) + G(hy, hz, hz),
G(hz, hy, hy) + G(hx, hy, hy),
G(hz, hx, hx) + G(hy, hx, hx)

⎫⎬
⎭ ≥ G(hx, hy, hz).(2.6)
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Thus, Equation (2.5) implies that,

G(hx, hy, hz) ≤ aG(x, y, z),(2.7)

where a = 1
k
.

Applying Theorem (1.1) on Condition (2.7), we conclude that the inverse
mapping h has a unique fixed point u ∈ X such that h(u) = u. But, u =
T (h(u)) = T (u), which shows that u is also a fixed point of T .

To show u is unique fixed point, use an argument similar to that in Theorem
(2.1).

Theorem 2.4. Let (X, G) be a complete nonsymmetric G-metric space and
let T : X −→ X be a surjective mapping satisfying the following condition for
all x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k max

⎧⎨
⎩

G(x, y, y) + G(y, x, x),
G(x, z, z) + G(z, x, x),
G(z, y, y) + G(y, z, z)

⎫⎬
⎭ ,(2.8)

where k > 2
3
. Then T has a unique fixed point.

Proof. Suppose T satisfies Condition (2.8), then T is injective and has an
inverse function. In Condition (2.8), let z = y. Then for all x, y,∈ X, we have

G(Tx, Ty, Ty) ≥ k{G(x, y, y) + G(y, x, x)},(2.9)

but (G5) implies that G(x, y, y) ≤ 2G(y, x, x). Therefore
1
2
G(x, y, y) + G(x, y, y) ≤ G(y, x, x) + G(x, y, y), then

3

2
G(x, y, y) ≤ G(y, x, x) + G(x, y, y).(2.10)

In this line, Equations (2.9) and (2.10) leads to,

G(Tx, Ty, Ty) ≥ 3k

2
G(x, y, y).(2.11)

Let h be the inverse mapping of T , therefore Equation (2.11), implies that,

G(x, y, y) = G(T (hx), T (hy), T (hy)) ≥ 3k

2
G(hx, hy, hy).(2.12)

for all x, y ∈ X. Using that k > 2
3
, we have

G(hx, hy, hy) ≤ cG(x, y, y)(2.13)

where c = 2
3k

and c < 1. Then, Theorem (1.2) implies that the inverse
mapping h has a unique fixed point u ∈ X such that h(u) = u, but, u =
T (h(u)) = T (u), which shows that u is a fixed point of T .

To prove uniqueness, suppose that v �= u is such that T (v) = v, then (2.8)
implies that

G(u, v, v) = G(Tu, Tv, Tv) ≥ k{G(u, v, v) + G(v, u, u)} ≥ 3k

2
G(u, v, v),



2468 Z. Mustafa, F. Awawdeh and W. Shatanawi

but 3k
2

> 1, thus G(u, v, v) > G(u, v, v), this contradiction implies that u =
v.

Theorem 2.5. Let (X, G) be a complete nonsymmetric G-metric space and
let T : X −→ X be a surjective mapping satisfying the following condition for
all x, y ∈ X

G(T (x), T (y), T (y)) ≥ k max{G(x, y, y), G(y, x, x)}(2.14)

where k > 1. Then T has a unique fixed point.

Proof. Since max{G(x, y, y), G(y, x, x)} ≥ G(x, y, y), then from (2.14), we de-
duce that

G(T (x), T (y), T (y)) ≥ k G(x, y, y), for all x, y ∈ X.(2.15)

From (2.15), it is clear that Theorem (2.2) implies that T has a unique fixed
point.

Corollary 2. Let (X, G) be a complete nonsymmetric G-metric space, and let
T : X −→ X be a surjective mapping satisfying the following condition for all
x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k max

⎧⎨
⎩

G(x, y, y), G(y, x, x),
G(x, z, z), G(z, x, x),
G(z, y, y), G(y, z, z)

⎫⎬
⎭(2.16)

where k > 1. Then T has a unique fixed point.

Proof. Follows from Theorem (2.5) by taking z = y.

Corollary 3. Let (X, G) be a complete G-metric space and let T : X −→ X
be a surjective mapping satisfying the following condition for all x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k {G(x, Tx, Tx) + G(Tx, y, z)}(2.17)

where k > 1. Then T has a unique fixed point.

Proof. From (G5), we have G(x, Tx, Tx) + G(Tx, y, z) ≥ G(x, y, z). Then
Condition (2.17) becomes G(T (x), T (y), T (z)) ≥ kG(x, y, z) for all x, y, z ∈ X,
and the proof follows from Theorem (2.1).

Theorem 2.6. Let (X, G) be a complete G-metric space and let T : X −→ X
be an onto mapping satisfying the following condition for all x, y, z ∈ X,

G(T (x), T (y), T (z)) ≥ aG(x, y, z) + bG(x, x, Tx) + cG(y, y, Ty) + dG(z, z, T z)
(2.18)

where a + b + c + d > 1 and b + c < 1. Then T has a fixed point.

Proof. Let x0 ∈ X, since T is onto then there exists an element x1 satisfying
x1 ∈ T−1(x0). By the same argument we can pickup xn ∈ T−1(xn−1) where
(n = 2, 3, 4, 5, . . . ). If xm = xm−1 for some m, then xm is a fixed point of T .
Assume xn �= xn−1 for every n, then from (2.18) we have,
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G(xn−1, xn−1, xn) = G(Txn, Txn, Txn+1) ≥ aG(xn, xn, xn+1) +
(b + c)G(xn, xn−1, xn−1) + dG(xn+1, xn, xn). So,

(1 − (b + c))G(xn−1, xn−1, xn) ≥ (a + d)G(xn+1, xn, xn), therefor

G(xn+1, xn, xn) ≤ 1 − (b + c)

a + d
G(xn−1, xn−1, xn).(2.19)

Let q = 1−(b+c)
a+d

. Then q < 1 and by repeated application of (2.19), we have

G(xn+1, xn, xn) ≤ qnG(x1, x0, x0).(2.20)

Then, for all n, m ∈ N; n < m, we have, by repeated use of the rectangle
inequality and Equation (2.20) that

G(xm, xn, xn) ≤ G(xm, xm−1, xm−1) + G(xm−1, xm−2, xm−2)
+ G(xm−2, xm−3, xm−3) + · · · + G(xn+1, xn, xn)
≤ (qm−1 + qm−2 + · · ·+ qn )G(x0, x1, x1) ≤ qn

1−q
G(x0, x1, x1). So,

lim G(xm, xn, xn) = 0, as n, m −→ ∞ and (xn) is G-Cauchy a sequence. By
the completeness of (X, G), there exists u ∈ X such that (xn) is G-converges
to u.

Let y ∈ T−1(u). For infinitely many n, xn �= u. For such n, we have
G(xn, u, u) = G(Txn+1, T y, Ty) ≥ aG(xn, y, y) +

bG(xn+1, xn+1, xn) + (c + d)G(y, y, u).
Since G(xn, u, u) −→ 0, as n −→ ∞, we have (c + d)G(y, y, u) = 0, and

aG(xn, y, y) −→ 0, (n −→ ∞). It is impossible that both c + d = 0 and a = 0.
Therefor,

1. If c + d �= 0, then G(y, y, u) = 0, which implies that u = y.
2. If a �= 0, then aG(xn, y, y) −→ 0, (n −→ ∞), which implies xn −→ y.

Hence in both cases we have u = y, but T (y) = u, so, T (y) = u = y,
therefor, u is a fixed point of T .

We see that if a < 1, then a fixed point of T is not unique, since the identity
mapping will satisfy Condition (2.18). However, if a > 1 this fixed point is
unique.

Corollary 4. Let (X, G) be a complete G-metric space and let T : X −→ X
be an onto mapping satisfying the following condition for all x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ αG(x, y, z) + β{G(x, x, Tx) + G(y, y, Ty) + G(z, z, T z)}
(2.21)

where α + 3β > 1 and β < 1
2
. Then T has a fixed point.

Proof. In Theorem (2.6), If a = α, and b = c = d = β , then the condition
(2.18) reduced to Condition (2.21), so the proof follows from Theorem (2.6).

Theorem 2.7. Let (X, G) be a complete G-metric space and let T : X −→ X
be an onto and G-continuous mapping satisfying the following condition for all
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x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k min

{
G(x, z, z), G(y, z, z), G(z, y, y),

G(x, y, y), G(z, x, x), G(y, x, x)

}
(2.22)

where k > 2. Then T has a unique fixed point.

Proof. As in Theorem (2.6), there is a sequence (xn) with xn−1 �= xn and
T (xn) = xn−1. Then from (2.22) we have,

G(xn, xn−1, xn−1) = G(Txn+1, Txn, Txn)

≥ k min

⎧⎪⎨
⎪⎩

G(xn+1, xn, xn), G(xn, xn, xn),

G(xn, xn, xn), G(xn+1, xn, xn),

G(xn, xn+1, xn+1), G(xn, xn+1, xn+1)

⎫⎪⎬
⎪⎭ .(2.23)

From G-metric property we have G(xn+1, xn, xn) ≤ 2G(xn+1, xn+1, xn), and
so, (2.23) becomes

G(xn, xn−1, xn−1) ≥ k min{G(xn+1, xn, xn), G(xn, xn+1, xn+1)} ≥ k
2
G(xn+1, xn, xn).

This implies that

G(xn+1, xn, xn) ≤ 2

k
G(xn, xn−1, xn−1).

Let q = 2
k
, then q < 1. By the same argument in the proof of Theorem (2.6),

we see that the sequence (xn) is G-Cauchy and by completeness of (X, G), the
sequence (xn) G-converges to a point u ∈ X.

Since T is G-continuous, then T (xn) = xn−1 −→ T (u), as n −→ ∞. Hence
Tu = u which shows that u is a fixed point of T .

To prove uniqueness, suppose that v �= u is such that T (v) = v, then
(2.22) implies that G(u, v, v) ≥ k min{G(u, v, v), G(v, u, u)}, thus G(u, v, v) ≥
kG(v, u, u) again by the same we will find G(v, u, u) ≥ kG(u, v, v), hence

G(u, v, v) ≥ k2G(u, v, v)

which implies that u = v, since k > 2.

Theorem 2.8. Let (X, G) be a complete G-metric space, and T : X −→ X be
an onto and G-continuous mapping satisfying the following condition for all
x ∈ X

G(T (x), T 2(x), T 3(x)) ≥ aG(x, Tx, T 2(x))(2.24)

where a > 1. Then T has a fixed point.

Proof. Similar to that in Theorem (2.6), there is a sequence (xn) with xn−1 �=
xn and T (xn) = xn−1. Then (2.24) implies that

G(xn−1, xn−2, xn−3) = G(Txn, T 2xn, T 3xn) ≥ aG(xn, Txn, T 2xn) = aG(xn, xn−1, xn−2),

(2.25)

and therefor,

G(xn, xn−1, xn−2) ≤ 1

a
G(xn−1, xn−2, xn−3).
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Let q = 1
a
, then q < 1. By the same argument in the proof of Theorem (2.6),

we see that the sequence (xn) is G-Cauchy and by completeness of (X, G), the
sequence (xn) G-converges to a point u ∈ X.

Since T is G-continuous, then T (xn) = xn−1 −→ T (u), as n −→ ∞. Hence
Tu = u which shows that u is a fixed point of T .

Theorem 2.9. Let (X, G) be a complete G-metric space and let T : X −→ X
be an onto mapping satisfying the following condition for all x, y, z ∈ X

G(T (x), T (y), T (z)) ≥ k max{G(x, Tx, Tx), G(y, Ty, Ty), G(z, T z, Tz)}
(2.26)

where k > 1. Then T has a fixed point.

Proof. As in Theorem (2.6), there is a sequence (xn) with xn−1 �= xn and
T (xn) = xn−1. Then (2.26) implies that

(2.27)

G(xn, xn−1, xn−1) = G(Txn+1, Txn, Txn) ≥
k max{G(xn+1, xn, xn), G(xn, xn−1, xn−1), G(xn, xn−1, xn−1)} = kG(xn+1, xn, xn)

and as a result we get,

G(xn+1, xn, xn) ≤ 1

k
G(xn, xn−1, xn−1).

Let q = 1
k
. Then q < 1. By the same argument in the proof of Theorem (2.6),

we see that the sequence (xn) is G-Cauchy and by completeness of (X, G), the
sequence (xn) G-converges to a point u ∈ X.

Let y ∈ T−1(u). For infinitely many n, (xn) �= u. For such n, from (2.26)
we have,

G(xn, u, u) = G(Txn+1, T y, Ty) ≥ k max{G(xn+1, xn, xn), G(y, Ty, Ty)} =
k max{G(xn+1, xn, xn), G(y, u, u)}.

Since G(xn, u, u) −→ 0, as n −→ ∞, we have kG(y, u, u) = 0 and
kG(xn+1, xn, xn) −→ 0, (n −→ ∞). Therefor, G(y, u, u) = 0, which implies
that u = y.

But T (y) = u, so, T (y) = u = y. This shows that u is a fixed point of T .

References

[1] Shang Zhi Wang, Bo Yu Li, Zhi Min Gao and Kiyoshi Iseki,” Some Fixed Point Theo-
rems on Expansion Mappings”, Math. Japonica, 29, No.4(1984),631-636.

[2] Zead Mustafa, A New Structure For Generalized Metric Spaces - With Applications To
Fixed Point Theory, PhD Thesis, the University of Newcastle, Australia, 2005.

[3] Zead Mustafa and Brailey Sims, ”A New Approach to Generalized Metric Spaces”,
Journal of Nonlinear and Convex Analysis, 7 (2), (2006 ). 289–297.

[4] Mustafa Z., Obiedat H. and Awawdeh F., Some Fixed Point Theorem for Mapping
on Complete G-metric Spaces, Fixed Point Theory and applications, 2008, article ID
189870, doi: 10.1155/2008/189870.



2472 Z. Mustafa, F. Awawdeh and W. Shatanawi

Received: April, 2010


