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1. INTRODUCTION

In 2005, a new structure of generalized metric spaces was introduced by
Zead Mustafa and Brailey Sims as appropriate notion of generalized metric
space called G-metric spaces (see [3]) as follows.

Definition 1. ([3]) Let X be a nonempty set, and let G: X x X x X — R™,
be a function satisfying the following properties:

(Gl) G(z,y,2) =0 ifx =y =2,

(G2) 0 < G(z,x,y); forall x,y € X, withx # vy,

(G3) G(z,2,y) < G(z,y,2), for all 2,y,2 € X, with = £y,
(G4)

G4) G(z,y,2) = G(z,z,y) = G(y,z,x) = ..., (symmetry in all three vari-
ables), and

(G5) G(x,y,2) < G(z,a,a) + G(a,y, z), for all x,y,z,a € X, (rectangle in-
equality ).

Then the function G is called generalized metric, or, more specifically G-metric
on X, and the pair (X, G) is called a G-metric space.(Throughout this paper
we denote R the set of all positive real numbers and N the set of all natural
numbers ).

Definition 2. ([3]) Let (X,G) be a G-metric space, let (x,) be a sequence of
points of X, a point x € X is said to be the limit of the sequence (x,) if
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limy, ;oo G(2, T, ) = 0, and one say that the sequence (x,,) is G-convergent
to x.

Thus, that if x, — 0 in a G-metric space (X, G), then for any e > 0, there
exists N € N such that G(x, x,, xy) < €, for alln,m > N.

Proposition 1. ([3]) Let (X,G) be a G-metric space. Then the following are
equivalent.

(1) (zn) is G-convergent to x.

(3)  G(zp,xp,x) — 0, asn — oo.

(4) G(xp,z,x) — 0, as n — 0.

(5)  G(zpm,Tn,x) — 0, as m,n — oo.
Definition 3. ([3]) Let (X, G) be a G-metric space. A sequence (x,,) is called
G-Cauchy if given € > 0, there is N € N such that G(zy, T, x;) < €, for all
n,m,l > N, that is, if G(xp, Tm,x;) — 0 as n,m,l — oo.
Proposition 2. ([3]) If (X,G) is a G-metric space, then the following are
equivalent.

1. The sequence (x,) is G-Cauchy.

2. For every e > 0, there exists N € N such that G(zp, T, Tm) < €, for all
n,m>N.

Definition 4. ([3]) Let (X,G) and (X', G") be two G-metric spaces, and let
[ (X,G) = (X',G") be a function. Then fis said to be G-continuous at a
point a € X if and only if given € > 0, there exists 0 > 0 such that x,y €
X; and G(a,z,y) < 6 implies G'(f(a), f(x), f(y)) < €. A function f is G-
continuous on X if and only if it is G-continuous at all a € X

Proposition 3. ([3]) Let (X,G) and (X',G") be two G-metric spaces. Then
a function f : X — X' is G-continuous at a point x € X if and only if it
is G-sequentially continuous at x; that is, whenever (x,) is G-convergent to
x we have (f(x,)) is G-convergent to f(x).

Proposition 4. ([3]) Let (X,G) be a G-metric space. Then the function
G(z,y, z) is jointly continuous in all three of its variables.

Definition 5. ([3]) A G-metric space (X,G) is said to be G-complete ( or
complete G-metric ) if every G-Cauchy sequence in (X, G) is G-convergent in
(X, G).

Definition 6. ([3]) A G-metric space (X,G) is called symmetric G-metric
space if G(z,y,y) = Gy, x,x) for all x,y € X.

The following fixed point theorem for a contractive mapping on G-metric
space has been proved in [2].

Theorem 1.1. ([2]) Let (X, G) be a complete G-metric space and T : X — X
be a mapping satisfies the following condition for all x,y,z € X

(1.1) G(Tx, Ty, Tz) < kG(x,y, 2)
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where k € [0,1). Then T has a unique fized point.

Theorem 1.2. ([2]) Let (X, G) be a complete G-metric space andT : X — X
be a mapping satisfies the following condition for all x,y € X

(1.2) G(Tx,Ty,Ty) < kG(x,y,y)

where k € [0,1). Then T has a unique fized point.

In [2] we showed that a mapping satisfies the Condition (1.1) will satisfy

Condition (1.2) when k € [0,1), where the converse is true only when k € [0, 3).

However, when £k € [%, 1), we showed in a counter example that Condition
(1.2) need not imply Condition (1.1)(for details see [2]).

Definition 7. Let (X, G) be a G-metric space and T be a self mapping on X.
Then T is called expansive mapping if there exists a constant a > 1 such that
for all z,y, z € X, we have

G(Tx,Ty,Tz) > aG(z,y, 2).

The following example shows that expansive mapping on G-metric space
need not be G-continuous.

Example 1. Let T: (R,G) — (R, G) be defined by

| b oifr <3
T(z) = { 5o4+2 ifz >3 }
where G(x,y, z) = max{|zx — y|, |y — 2|, |z — 2z|}. Then (R,G) is a complete
G-metric space and T is expansive mapping where T is not G-continuous.

2. MAIN RESULTS
We start our work by proving the following theorem:

Theorem 2.1. Let (X,G) be a complete G-metric space. If there exists a
constant a > 1 and a surjective self mapping T on X, such that for all x,y, z €
X

(2.1) G(Tz, Ty, Tz) > aG(x,y, 2),

then T has a unique fixed point.

Proof. Under the assumption, if Tx = Ty, then 0 = G(Tz, Ty, Ty) > aG(z,y,y),
which implies that G(z,y,y) = 0, and hence x = y. So, T is injective and in-
vertible.

Let h be the inverse mapping of T'. Then

G(z,y,2) = G(T(hx), T(hy), T(hz)) > aG(hz, hy, hz).

Thus, for all z,y, 2z € X, we have G(hx, hy, hz) < kG(x,y, z), where k = é
Applying Theorem (1.1), we conclude that the inverse mapping h has a unique
fixed point v € X; h(u) = u. But, u = T'(h(u)) = T'(u). This gives that u is
also a fixed point of T'.
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Suppose there exists another fixed point v # u such that Tv = v, then
Tv=wv="T(h(v)) = h(Tv), so Tv is another fixed point for h. By uniqueness
we conclude that v = Tv = v, which implies that u is a unique fixed point of
T. O

Theorem 2.2. Let (X,G) be a complete G-metric space. If there exists a
constant ¢ > 1 and a surjective self mapping T on X, such that for allx,y € X
(2.2) G(Tz, Ty, Ty) > cG(z,y,y),

then T has a unique fixed point.

Proof. Under the assumption, we see that 1" is injective, and hence T' is in-
vertible. Let h be the inverse mapping of T'. So,
G(z,y,y) = G(I'(ha),T(hy),T(hy)) = cG(hx, hy, hy).

Then, for all z,y € X we have G(hx, hy, hy) < kG(z,y,y), where k = %
Applying Theorem (1.2) on the inverse mapping h, and use argument similar
to that in proof Theorem (2.1), we conclude that 7" has unique fixed point [

Corollary 1. Let (X,G) be a complete G-metric space. If there exists a con-
stant k > 1 and a surjective self mapping on X, such that for all z,y,z € X
(2.3) G(Tz, Ty, Tz) > k{G(z, z,2) + G(y, 2, 2)},

then T has a unique fixed point.

Proof. Follows from Theorem (2.2), by taking z = y in Condition (2.3). O

Theorem 2.3. Let (X, G) be a complete G-metric space, and let T : X — X
be a surjective mapping satisfying the following condition for all x,y,z € X
G(z,z,2) + Gy, 2, 2),
(24)  G(T(x),T(y),T(2) = k max ¢ G(z,y,y) + G(x,y,y),
G(Za Z, 33') + G(y> Z, 33')
where k > 1. Then T has a unique fized point.

Proof. Condition (2.4) implies that 7" is injective and therefor invertible.
Let h be the inverse mapping of T. By Condition (2.4) for all z,y,z € X,
we have,

(2.5)
G(hz,hz, hz) + G(hy, hz, hz),
G(z,y,z) = G(T(hx), T(hy),T(hz)) > k max{ G(hz, hy, hy) + G(hx, hy, hy),
G(hz, hx, hx) + G(hy, hz, hz)
But, by (G5) we have,
G(hz,hz, hz) + G(hy, hz, hz),
(2.6) max{ G(hz, hy, hy) + G(hz, hy, hy), 3 > G(hz, hy, hz).
G(hz, hz, hx) + G(hy, hx, hx)
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Thus, Equation (2.5) implies that,
(2.7) G(hz, hy,hz) < aG(x,y, z),

where a = %

Applying Theorem (1.1) on Condition (2.7), we conclude that the inverse
mapping h has a unique fixed point v € X such that h(u) = u. But, u =
T(h(u)) = T(u), which shows that w is also a fixed point of T

To show w is unique fixed point, use an argument similar to that in Theorem
(2.1). O

Theorem 2.4. Let (X,G) be a complete nonsymmetric G-metric space and
let T : X — X be a surjective mapping satisfying the following condition for
all x,y,z € X
G(z,y,y) + Gy, v, x),
(2.8) G(T(x),T(y), T(2)) > k max{ G(z,z 2)+G(z,z,2), ;,
G(zy.y) + Gy, 2,2)

where k > % Then T has a unique fized point.

Proof. Suppose T satisfies Condition (2.8), then 7T is injective and has an
inverse function. In Condition (2.8), let z = y. Then for all z,y, € X, we have

(2.9) G(Tx, Ty, Ty) > K{G(x,y,y) + Gy, 2, 2)},
but (G5) implies that G(z,y,y) < 2G(y, z, ). Therefore
3G(x,y,y) + G(z,y,y) < Gy, z,7) + G(z,y,y), then

3
In this line, Equations (2.9) and (2.10) leads to,
k
(2.11) G(Tx, Ty, Ty) > 3?G(Jc,y,y).

Let h be the inverse mapping of T', therefore Equation (2.11), implies that,

(2.12) Gy, v) = G (). T(hy), T(hy)) > 2 G(hr, by, hy).

for all z,y € X. Using that k& > %, we have
(2.13) G(hz, hy, hy) < cG(z,y,y)

where ¢ = 2 and ¢ < 1. Then, Theorem (1.2) implies that the inverse
mapping h has a unique fixed point u € X such that h(u) = u, but, u =
T(h(u)) = T(u), which shows that « is a fixed point of T.

To prove uniqueness, suppose that v # u is such that T'(v) = v, then (2.8)
implies that

G(u,v,v) = G(Tu, Tv,Tv) > k{G(u,v,v) + G(v,u,u)} > %G(u,v,v),
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but 3—2]“ > 1, thus G(u,v,v) > G(u,v,v), this contradiction implies that u =
V. ]

Theorem 2.5. Let (X, G) be a complete nonsymmetric G-metric space and
let T : X — X be a surjective mapping satisfying the following condition for
all x,y € X

(2.14) G(T'(x), T(y), T(y)) = k max{G(z,y,y), G(y,z,x)}
where k > 1. Then T has a unique fized point.

Proof. Since max{G(z,y,y),G(y,z,x)} > G(x,y,y), then from (2.14), we de-
duce that

(2.15) G(T(x),T(y), T(y)) > kG(x,y,y), for all z,y € X.
From (2.15), it is clear that Theorem (2.2) implies that 7" has a unique fixed
point. U

Corollary 2. Let (X, G) be a complete nonsymmetric G-metric space, and let
T: X — X be a surjective mapping satisfying the following condition for all
x’ y? z E X

G(z,y,9), Gy, z,x),
(2.16) G(T(x),T(y),T(z)) > k max{ G(z,z2), G(z,x,x),
G(z,9,9), Gy, 2, 2)

where k > 1. Then T has a unique fized point.
Proof. Follows from Theorem (2.5) by taking z = y. O

Corollary 3. Let (X,G) be a complete G-metric space and let T : X — X
be a surjective mapping satisfying the following condition for all x,y,z € X

(2.17) G(T'(x),T(y), T(2)) =2 k{G(z, Tz, Tx) + G(Tz,y,2)}
where k > 1. Then T has a unique fized point.

Proof. From (Gb), we have G(z,Tz,Tx) + G(Tx,y,z) > G(x,y,z). Then
Condition (2.17) becomes G(T'(x), T(y),T(z)) > kG(z,y, z) for all x,y, z € X,
and the proof follows from Theorem (2.1). O

Theorem 2.6. Let (X, G) be a complete G-metric space and let T : X — X
be an onto mapping satisfying the following condition for all x,y,z € X,
(2.18)

G(T(2), T(y),T(2)) = aG(z,y, 2) + bG(x, 2, Tx) + cG(y,y, Ty) + dG(z, 2, T'z)

where a +b+c+d> 1 andb+c < 1. ThenT has a fized point.

Proof. Let xy € X, since T is onto then there exists an element x; satisfying
11 € T7Y(xp). By the same argument we can pickup z, € T~ !(x,_1) where
(n=2,3,4,5,...). If z,,, = x,,_; for some m, then x,, is a fixed point of T
Assume z,, # x,_; for every n, then from (2.18) we have,
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G(In—lu Tn—1, xn) = G(Tl'n, Txnv T-rn-‘,-l) Z CLG(ZL'n, T, xn—&—l) +
(b+¢)G(xp, Tn1, Tn_1) + dG(xp11, Tp, T,). So,
(1 - (b + C))G(%’n,l, Tpn-1, xn) 2 (a + d)G(xn+1: Tn, xn): therefor

1—(b+¢)

(219> G(In-i-l?xn?xn) S CL+d

G(xn—h Tp—1, xn)

Let g = l_a(ij;c). Then ¢ < 1 and by repeated application of (2.19), we have

(2.20) G(Tpi1, Tn, Tn) < ¢"G(x1, 20, T0).

Then, for all n,m € N;n < m, we have, by repeated use of the rectangle
inequality and Equation (2.20) that

G(xma T, xn) S G(wma Tm—1, xm71> + G(xmfla Tm—2, xm72>
+ G(xmf% Lm—3, xme) + o+ G(anrla Ly xn)
< (@™t g™+ 4 ¢")G(x, 1, 11) < lq—fq G(xg, x1,11). So,
lim G(x,, Tn, 2,) = 0, as n,m — oo and (x,) is G-Cauchy a sequence. By
the completeness of (X, &), there exists u € X such that (x,) is G-converges
to w.

Let y € T7(u). For infinitely many n, x, # u. For such n, we have

G, u,u) = G(Twny1, Ty, Ty) > aG (2, y,y) +
bG(iL‘n+1, Ln+1, .Tn) + (C + d)G(ya Y, u)

Since G(xp,u,u) — 0, as n — 00, we have (¢ + d)G(y,y,u) = 0, and
aG(xpn,y,y) — 0, (n — o0). It is impossible that both ¢+ d = 0 and a = 0.
Therefor,

1. If c+d # 0, then G(y,y,u) = 0, which implies that u = y.
2. If a # 0, then aG(z,,y,y) — 0, (n — 00), which implies x,, — v.

Hence in both cases we have u = y, but T(y) = u, so, T(y) = u = y,
therefor, u is a fixed point of T

We see that if a < 1, then a fixed point of T" is not unique, since the identity
mapping will satisfy Condition (2.18). However, if a > 1 this fixed point is
unique. ]

Corollary 4. Let (X,G) be a complete G-metric space and let T : X — X
be an onto mapping satisfying the following condition for all x,y,z € X

(2.21)
G(T(x), T(y), T(2)) > aG(z,y,2) + f{G(z,z,Tx) + G(y,y, Ty) + G(z,2,Tz)}
where a + 33 > 1 and § < % Then T has a fixed point.

Proof. In Theorem (2.6), If a = o, and b = ¢ = d = (3, then the condition
(2.18) reduced to Condition (2.21), so the proof follows from Theorem (2.6).
U

Theorem 2.7. Let (X, G) be a complete G-metric space and let T : X — X
be an onto and G-continuous mapping satisfying the following condition for all
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x’ y? z E X

G(v,2,2), Gy, 2,2), G(2, ¥, ),
2.22 G(T(x), T(y), T > kmi
(222)  G(T(x),T(y), T(2)) > kmin {G b }
where k > 2. Then T has a unique fized point.

Proof. As in Theorem (2.6), there is a sequence (x,) with z,_1 # z, and
T(x,) = 1. Then from (2.22) we have,
G(Inu Tn-1, l‘n—l) = G(T.Tn+1, Txnv T-rn)
G(xn+17 L, In)u G(xTH T, xn)u
(2-23> > kmin G(xmxmxn)a G(xn+1:xn:xn)a
G(Inu Tn+1, l‘n-i-l)a G(Inu Tn+1, -rn-i-l)
From G-metric property we have G (241, Tn, Tn) < 2G(Tpi1, Tnt1, Tn), and
s0, (2.23) becomes
G(Inu Tn-1, l‘n—l) Z k min{G(J;n-i-la Ty In)u G(xnv Tnt1, xn+1)} Z gG(In-l—la Ty -rn)
This implies that

G(In+1, L,y xn) S EG(xnv Tp—1, xn—l)‘

Let ¢ = %, then ¢ < 1. By the same argument in the proof of Theorem (2.6),
we see that the sequence (z,,) is G-Cauchy and by completeness of (X, G), the
sequence (z,,) G-converges to a point u € X.

Since T' is G-continuous, then T'(z,) = x,—1 — T'(u), as n — oo. Hence
Tw = uw which shows that u is a fixed point of T'.

To prove uniqueness, suppose that v # wu is such that T'(v) = v, then
(2.22) implies that G(u,v,v) > kmin{G(u,v,v), G(v,u,u)}, thus G(u,v,v) >
kG(v,u,u) again by the same we will find G (v, u,u) > kG(u,v,v), hence

G(u,v,v) > k*G(u,v,v)
which implies that u = v, since k > 2. O

Theorem 2.8. Let (X, G) be a complete G-metric space, and T : X — X be
an onto and G-continuous mapping satisfying the following condition for all
re X

(2.24) G(T(z),T*(x), T*(x)) > aG(z, Tz, T*(z))
where a > 1. Then T has a fixed point.

Proof. Similar to that in Theorem (2.6), there is a sequence (z,) with x,_; #

x, and T(x,) = x,_1. Then (2.24) implies that

(2.25)

G(iﬂn,l, Tn—2, xnf?)) = G(Txm T2xn: Tan> > @G($na Txn: Tan> = @G($n: Tn-1, xnf2>:

and therefor,

—_

G(xnu Tn—1, l‘n—2) S _G(xn—lu Tp—2, -rn—?))'

Q
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Let ¢ = %, then ¢ < 1. By the same argument in the proof of Theorem (2.6),

a
we see that the sequence (z,,) is G-Cauchy and by completeness of (X, G), the
sequence (z,,) G-converges to a point u € X.
Since T is G-continuous, then T'(x,) = x,—1 — T'(u), as n — oo. Hence

Tu = u which shows that wu is a fixed point of T'. O

Theorem 2.9. Let (X, G) be a complete G-metric space and let T : X — X
be an onto mapping satisfying the following condition for all x,y,z € X

(2.26)
G(T(x), T(y), T(z)) > kmax{G(x, Tz, Tx),G(y, Ty, Ty),G(z,Tz,Tz)}

where k > 1. Then T has a fixed point.

Proof. As in Theorem (2.6), there is a sequence (x,) with z,_1 # z, and
T(x,) = @p—1. Then (2.26) implies that

(2.27)

G(xna Tn-1, $n71> = G(Tanrla Txn: Txn) >
k maX{G(anrl: Ly xn): G(xm Tn—1, .Tn,l), G(xn: Tn-1, xnfl)} = kG(anrla T, xn)
and as a result we get,

G(In+1, Tn, xn) S EG(xny Tp—1, xn—l)‘

Let q = % Then ¢ < 1. By the same argument in the proof of Theorem (2.6),
we see that the sequence (z,,) is G-Cauchy and by completeness of (X, G), the
sequence (z,,) G-converges to a point u € X.

Let y € T7'(u). For infinitely many n, (z,) # u. For such n, from (2.26)
we have,

G(zn,u,u) = G(Txp1, Ty, Ty) > kmax{G(x,11, Tn, xn), Gy, Ty, Ty)} =
kmax{G(zpi1,Tn, Tn), Gy, u,u)}.

Since G(zp,u,u) — 0, as n — 00, we have kG(y, u,u) = 0 and
kG(xpi1, Tp, n) — 0,(n — o0). Therefor, G(y,u,u) = 0, which implies
that u = y.

But T'(y) = u, so, T(y) = u = y. This shows that u is a fixed point of T'.

[
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