Abstract

In this paper, we introduce the concept relative FI-lifting modules relative a proper class of short exact sequences of modules as in [4]. It is well known, any finite direct sum of FI-lifting modules is again FI-lifting (see[9]), but this property is not true in general for infinite direct sums. In this paper we will show that it is true for relative FI-lifting modules.

Keywords: FI-Lifting modules; strong FI-lifting modules; fully invariant submodules; lifting modules; proper class.

1 Introduction

A module M is called *(strong)* FI-lifting if every fully invariant submodule N of M contains a (fully invariant) direct summand K of M, such that $N/K \ll M/K$. Lifting modules and their generalizations have been studied by many authors [see 1, 2, 4, 8]. *(strong)* FI-lifting modules is the proper generalization of lifting module. It is well known, any finite direct sum of FI-lifting modules is again FI-lifting (see[9]), but this property is not true in general for infinite direct sums of FI-lifting modules. In this article, we introduced (strongly) E-FI-lifting module relative a proper class of short exact sequence s of modules as in [4] and characterize for any direct sums of copies of them are such relative FI-lifting modules

2 Preliminary Notes

Throughout this article, R is an associative ring and with nonzero identity and all modules are unital right R-modules, morphisms will operate on the right. We use $N \leq M$ to indicate that N is a submodule of M. Let M be a skeletally small (full) subcategory of Mod-R. $Add(M)(add(M))$ denote
the class of modules which are isomorphic to direct summands of (finite) direct sums of modules of \(M \), \(\text{Prod}(M) \) denoted the class of modules which are isomorphic to direct summands of direct products of modules of \(M \), \(\text{Gen}(M) \) denoted the class of modules generated by \(M \), \(\text{Cogen}(M) \) denoted the class of modules was cogenerated by \(M \). \(\text{Cogen}'(M) \) denote the class of modules for which there exist a monomorphism from \(K \) to some \(M^{(i)} \), and the class \(\text{Prod}'(M) \) of modules \(K \) for which there is an \(E \)-monomorphism from \(K \) to some \(M^{(i)} \).

Let us consider two classes of modules related to \(M \) and to a proper class \(E \) of short exact sequences in \(\text{Mod}-R \). Denote by \(\text{Add}(M) \) the class of modules \(N \) for which there is an \(E \)-epimorphism \(\bigoplus_{i \in I} M_i \rightarrow N \) with each \(M_i \in M \) (or, equivalently, an \(E \)-epimorphism \(X \rightarrow N \) with \(X \in \text{Add}(M) \)), and by \(\text{Prod}(M)=\{K \in \text{Mod}-R|\text{there is an } E \text{-epimorphism } K \rightarrow \prod \limits_{i \in I} M_i, i \in I \text{ with each } M_i \in M\} \) (or, equivalently, an \(E \)-epimorphism \(X \rightarrow N \) with \(X \in \text{Prod}(M) \)).

Definition 2.1 \([4]\) Let \(E \) be a class of short exact sequences in \(\text{Mod}-R \). If an exact sequence \(0 \rightarrow K \rightarrow L \rightarrow N \rightarrow 0 \) belongs to \(E \), then \(f \) is called \(E \)-monomorphism and \(g \) is called an \(E \)-epimorphism. Also, \(\text{Im } f \) is called an \(E \)-submodule of \(L \) and \(N \) is called an \(E \)-homosphic image of \(L \).

The class \(E \) is called a proper class if it has the following properties:

- **P1.** \(E \) is closed under isomorphisms.
- **P2.** \(E \) contains all splitting short exact sequences.
- **P3.** The class of \(E \)-monomorphism is closed under composition; \(f, f' \) are monomorphisms and \(f'f \) is an \(E \)-monomorphism, then \(f \) is an \(E \)-monomorphism.
- **P4.** The class of \(E \)-epimorphism is closed under composition; \(f, f' \) are epimorphisms and \(f'f \) is an \(E \)-epimorphism, then \(f \) is an \(E \)-epimorphism.

Definition 2.2 Let \(M \) be a module, \(X \leq M \) is called fully invariant (denote \(X \triangleright M \)), if for every \(h \in \text{End}_R(M) \), \(h(X) \subseteq X \).

Definition 2.3 \([6]\) A module \(M \) is called (strongly) FI-lifting, if for every fully invariant submodules \(N \) of \(M \), there is a (fully invariant) direct summand \(D \) of \(M \) such that \(N/D \ll M/D \).

It is well known, if \(M \) is an FI-lifting, \(A \) is a fully invariant coclosed submodule of \(M \), then \(M/A \) are FI-lifting.

It is easy to proof that any direct summand of strongly FI-lifting is strongly FI-lifting. Clearly, indecomposable FI-lifting module are strongly FI-lifting.
module. Noted that (strong) FI-lifting modules is closed under its coclosed fully invariant submodules and its (indecomposable) factor modules. So we have:

Lemma 2.4 [4] For an R-module M, the following are equivalent:
1. M is Σ-E-direct injective.
2. For every $U \in \text{Cogen}'(M)$ and every $V \in E\text{Prod}'(M)$, every monomorphism $V \to U$ is an E-monomorphism.
3. For every $U, V \in E\text{Prod}'(M)$, every monomorphism $V \to U$ is an E-monomorphism.

Lemma 2.5 [4] Let M be a E-direct injective module. If $U \leq M$, and V is an E-submodule of M, then every monomorphism $V \to U$ is an E-monomorphism.

For a module M, denote by $\sigma[M]$ the full subcategory of $\text{Mod-}R$ whose objects are submodules of M-generated modules.

Definition 2.6 [6] A module $N \in \sigma[M]$ is called M-singular if $N \cong L/K$ for some $K \supseteq L$ and $L \in \sigma[M]$. A module $N \in \sigma[M]$ is called M-small if $N \ll L$ for some $L \in \sigma[M]$. The modules in the torsion class of the torsion theory in $\sigma[M]$ cogenerated by the M-small modules are called non-M-cosingular.

Definition 2.7 [4] A module M is called strong E-lifting, if it has coclosure property, and the coclosed submodule is an E-submodule.

Calling a module M has coclosure property, if every submodule of M has coclosed submodule.

3 Main Results

Definition 3.1 A module M is called E-FI-lifting, if the every fully invariant submodules N of M, there is an E-submodule D of M such that $N/D \ll M/D$.

It is clearly that every fully invariant coclosed submodule of an E-FI-lifting module is E-submodule. If M has coclosure property, the converse is true. The following theorem will show that FI-lifting module was generalized by E-FI-lifting module.

Theorem 3.2 Let M be a module, consider the following statements:
(a) M is strongly E-FI-lifting module.
(b) M is E-FI-lifting module.
(c) M is FI-lifting module.

Then

(i) for every module M, $(a) \Rightarrow (b) \Rightarrow (c)$.
(ii) If the direct summand of M coincide with fully invariant submodule then $(c) \Rightarrow (a)$.

Proof (i) $(a) \Rightarrow (b)$ is clearly. Let $E = E_S$ then $(b) \Rightarrow (c)$.

(ii) Since M is FI-lifting module, let N be a fully invariant submodule of M, then there exist a direct summand K of M such that $N/K \ll M/K$ by the hypothesis, K is the fully invariant submodule of M, and clearly K is E-submodules of M, so M is strongly E-FI-lifting module.

A module M is called **duo module** provide that every submodule of M is fully invariant submodule. So we have the following:

Corollary 3.3 If M is a duo module, then the following statements are equivalent:

(a) M is an strongly E-FI-lifting module.
(b) M is an E-FI-lifting module.
(c) M is FI-lifting module.

Proof By Theorem 3.2 above, the proof is clear.

In general an E-FI-lifting module is not E-lifting module, look at the following example:

Example 3.4 [12] Let p be a prime number, consider Z-module $M = (Z/pZ) \oplus (Z/p^3Z)$.

M is E_S-FI-lifting module, but it is not E_S-lifting module by [11]. However, when M is a duo module, E-FI-lifting module is an E-lifting.

Definition 3.5 A module M is called strongly FI-lifting, if for every fully invariant submodules N of M, there is a fully invariant direct summand D of M such that $N/D \ll M/D$.

If M is a duo module and has coclosure property, strongly E-lifting module is equivalent to strongly E-FI-lifting module.

We well known that if M has the coclosure property, so does every coclosed submodule, every fully invariant (coclosed) submodule and every homomorphic image of M. What about the E-FI-lifting module?
Lemma 3.6 Let A be a fully invariant coclosed submodule of an E-FI-lifting B, then A is E-FI-lifting. If B has coclosure property, then B/A is E-FI-lifting.

Proof Let B be an E-FI-lifting module, and A be a coclosed submodule of B, let C be a fully invariant submodule of A. Since B is E-FI-lifting, C contains a cosmall submodule D of C in B such that D is an E-submodule of B. Then D is an E-submodule of A, since A is the coclosed submodule of B, D is a cosmall submodule of C in B, it follows that D is a cosmall submodule of C in A by [6, Lemma 3.9]. Let C/A a fully invariant coclosed submodule of B/A, then A is a fully invariant coclosed submodule of B, and A is a fully invariant E-submodule of B, then C/A is an E-submodule of B/A, so B/A is an E-FI-lifting module.

Lemma 3.7 Let A be a coclosed fully invariant submodule of a strong E-FI-lifting module B. If B has coclosure property, then A and B/A are strongly E-FI-lifting modules. The proof is similarly to Lemma 3.6.

Theorem 3.8 Let $M = \bigoplus_{i \in I} M_i$. If $M_i(i \in I)$ are E-FI-lifting modules, then M is E-FI-lifting module.

Proof Let $M_i(i \in I)$ are E-FI-lifting modules, $S \triangleright M$. There exist $e_i^2 = e_i E (= \operatorname{End}M)$ such that $M_i = Me_i$. Since $S \triangleright M$, $S = \bigoplus_{i \in I} (S \cap M_i) = \bigoplus_{i \in I} Se_i$. Clearly, $\operatorname{End}_R(Me_i) = e_i E e_i$. Because $(Se_i)e_i e_i e_i = Se_i E e_i \leq Se_i$, so $Se_i \triangleright Me_i = M_i$. Hence there exist E-submodules D_i of M_i, such that $Se_i/D_i \ll M_i/D_i$, also, $Se_i/D_i \ll M/D_i$, $S/\bigoplus_{i \in I} D_i \ll M/\bigoplus_{i \in I} D_i$ by ([5], Lemma 2.5), D_i are E-submodules of M, so does $\bigoplus_{i \in I} D_i$, hence M is E-FI-lifting module.

By [9, Theorem 3.4], any finite direct sum of FI-lifting modules is again FI-lifting. The following two examples show that this property is not true in general for infinite direct sums of FI-lifting modules. Let R be a discrete valuation ring with maximal ideal m. Let $M = \bigoplus_{i = 1}^{\infty} R/m^i$ or $M = R^{\mathbb{N}}$. By [10, Corollary 2, P.48], $\operatorname{Rad}(M)$ does not have a supplement in M. Since $\operatorname{Rad}(M)$ is a fully invariant submodule of M, M is not FI-lifting. On the other hand, it is clear that $R/m^i(i \geq 1)$ and R are lifting modules.

Corollary 3.9 Let $M = \bigoplus_{i \in I} M_i$. If $M_i(i \in I)$ are strongly E-FI-lifting modules, then M is E-FI-lifting modules. The proof is immediately by Theorem
3.8 and Lemma 3.7 above.

A module M is said to be $\sum P$ if every direct sum of copies of M has the property P. Now we characterize relative (strongly E-FI)-lifting modules following from [4].

Theorem 3.10 Let M be a module, consider the following statements:

(a) M is $\sum E$-FI-lifting.
(b) Every module in $\text{Add}(M)$ is E-FI-lifting.
(c) Every fully invariant $N \in \text{Cogen}'(M)$ has an M-small E-homomorphic image N/Y, such that Y is in $E\text{Prod}'(M)$.
(d) Every fully invariant non-M-cosingular module in $\text{Cogen}'(M)$ is in $E\text{Prod}'(M)$.
(e) Every fully invariant non-M-cosingular module in $\text{Cogen}'(M)$ is in E-FI-lifting.

Then the following implications hold:

(1) For every module (a) \Leftrightarrow (b) \Rightarrow (c) \Rightarrow (d).
(2) If M is $\sum E$-direct injective and has the \sum-coclosure property, then (d) \Rightarrow (e).
(3) If M is $\sum E$-direct injective and has the \sum-FI-coclosure property, and for every $U \subseteq N \subseteq F \in E\text{Prod}'(M)$, K/U is M-small, implies U is a cosmall submodule of K in F, then (c) \Rightarrow (a).
(4) If M is non-M-cosingular, then (e) \Rightarrow (a).

Proof (1)(a) \Rightarrow (b), let M be an E-FI-lifting module, by Theorem 2.8, $M^{(1)}$ is E-FI-lifting module.

(b)\Rightarrow (a) is clear.

(b)\Rightarrow (c) Let $N \in \text{cogen}'(M)$ and N be a fully invariant submodule, take a monomorphism $f : N \rightarrow M^{(1)}$. $N \supset M$, it is easily to get $f(N) \supset M^{(1)}$.

Since $M^{(1)}$ is E-FI-lifting module, there exist an fully invariant submodule E-submodule Y' of $M^{(1)}$ such that $Y' \subseteq f(N)$, and $f(N)/Y' \ll M^{(1)}/Y'$. Since $f(N)/Y' \ll M^{1}/Y'$, if $Y = f^{-1}(Y')$, then it follows that N/Y is M-small, $Y \in E\text{Prod}'(M)$, also $N \in \text{cogen}'(M), Y$ is an E-submodule of N.

(c) \Rightarrow (d) Clear.

(2) Assume that M is $\sum E$-direct injective and has the \sum-coclosure property.

(d) \Rightarrow (e) Let N be a fully invariant and non-M-cosingular module in $\text{cogen}'(M)$, we say N is E-FI-lifting. Consider a monomorphism $f : N \rightarrow M^{(1)}$. Let L be a fully invariant submodule of a non-M-singular module of N. Then $f(L)$ has coclosure in $M^{(1)}$, say K. Hence K is a coclosed in $f(N)$, and thus K is a fully invariant submodule of a non-M-cosingular module. Since $K \in \text{Cogen}'(M)$, we have $K \in E\text{Prod}'(M)$ by hypothesis. Now by Lemma 1.8 the inclusion $K \rightarrow f(N)$ is an E-monomorphism. Then the inclusion $f^{-1}(K) \rightarrow N$ is an E-monomorphism. Since $f^{-1}(K)$ is coclosed in N, it follows that N is an E-FI-lifting.
(3) If M is Σ-E-direct injective and has the Σ-FI-coclosure property, and for every $U \subseteq N \subseteq F \in E\text{Prod}'(M)$, K/U is M-small, implies U is a cosmall submodule of K in F, then (c) \Rightarrow (a).

Let N be a fully invariant submodule of $F = M^{(I)}$, where I is any set. By (C) the module $N \subseteq \text{cogen}'(M)$ has an M-small homorphic image N/Y such that $Y \in E\text{Prod}'(M)$. Then $Y \subseteq N \subseteq F \in \text{EProd}'(M)$ and N/Y is M-small, hence $N/Y \leq F/Y$ by hypothesis, by Lemma 1.8 the inclusion $N \rightarrow F$ is an E-monomorphism. $M^{(I)}$ has FI-coclosure property, so F is E-FI-lifting.

(4) (e) \Rightarrow (a) If M is non-M-cosingular, then every $M^{(I)}$ is non-M-cosingular, hence E-FI-lifting.

Theorem 3.11 Let M be a module, consider the following statements:

(a) M is Σ-stronly E-FI-lifting.
(b) Every module in $\text{Add}(M)$ is strongly E-FI-lifting.
(c) Every module in $E\text{Prod}'(M)$ is strongly E-FI-lifting.
(d) Every non-M-Cosingular module in $\text{Cogen}'(M)$ is strongly E-FI-lifting.
(e) A module is in $E\text{Prod}'(M)$ if and only if it is in $\text{Cogen}'(M)$ and non-M-cosingular.

Then the following implications holds:

1. For every module (a)\iff (b)\iff(c).
2. If M is also non-M-cosingular module, then (a)\Rightarrow (e) and (d) \Rightarrow (a).
3. If M is Σ-E-direct injective Σ-E-lifting, then (e) \Rightarrow (c) and (e) \Rightarrow (d).

Proof (1) (a)\Rightarrow (c) Let $K \in \text{Prod}'(M)$. Then there is an E-monomorphism $K \rightarrow M^{(I)}$, by Lemma 2.6 K is strongly E-FI-lifting;

(c) \Rightarrow (b) \Rightarrow (a) are clear.

(2) Assume M is non-M-singular.

(a)\Rightarrow (c) by Theorem 2.9, every fully invariant non-M-singular module in $\text{Cogen}'(M)$ is in $E\text{Prod}'(M)$. Conversely, let $K \in E\text{Prod}'(M)$ and take some E-monomorphism $K \rightarrow M^{(I)}$. Then K is an E-submodule of $M^{(I)}$, have coclosed in $M^{(I)}$. Now since $M^{(I)}$ is non-M-singular, so is K.

(d) \Rightarrow (a) If M is non-M-singular, then every $M^{(I)}$ is non-M-singular, hence M is strongly E-FI-lifting.

(3) Assume M is Σ-E-direct injective Σ-E-FI-lifting.

(e)\Rightarrow (c), (d) By hypothesis and Theorem 2.9, every module in $E\text{Prod}'(M)$ is E-FI-lifting. Now let $K \in E\text{Prod}'(M)$ and L be an E-submodule of K, by an easy variation of Lemm1.9, $L \in E\text{Prod}'(M)$, hence L is non-M-singular, so that L is coclosed in K. Thus K is strongly E-FI-lifting.

References

[1] F.W Anderson, K.R Fuller, *Ring and Categories of Modules*[M], Spring-

[4] S. Crivei, \sum-extending modules and \sum-lifting modules, and proper class, Comm Algebra, 36 (2008), 529-545.

Received: June, 2010