Functions of Slow Increase Generalization of the Logarithmic Integral

Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján
Buenos Aires, Argentina
jakimczu@mail.unlu.edu.ar

Abstract

We generalize the well-known formula.

\[Li(x) = \int_2^x \frac{1}{\log t} \, dt = \frac{x}{\log x} + \frac{1!x}{\log^2 x} + \cdots + \frac{(m - 1)!x}{\log^m x} + o\left(\frac{x}{\log^m x}\right). \]

We prove a similar formula for \(\int_b^x f(t) \, dt \) if \(f(x) \) is a function of slow increase and certain conditions are fulfilled.

Mathematics Subject Classification: 11B99, 11N45, 11B05

Keywords: Functions of slow increase, Logarithmic integral

1 Introduction

First, we recall the definition of function of slow increase given in [1].

Definition 1.1 Let \(f(x) \) be a function defined on the interval \([a, \infty)\) such that \(f(x) > 0, \lim_{x \to \infty} f(x) = \infty \) and with continuous derivative \(f'(x) > 0 \). The function \(f(x) \) is of slow increase if and only if the following condition holds.

\[\lim_{x \to \infty} \frac{xf'(x)}{f(x)} = 0. \]

Typical functions of slow increase are \(f(x) = \log x, f(x) = \log^2 x, f(x) = \log \log x \). We have the following theorem.

Theorem 1.2 Let us consider a function \(f(x) \) of slow increase defined on the interval \([a, \infty)\) (\(a > 0 \)). Suppose that (see (1))

\[\frac{xf'(x)}{f(x)} = \frac{1}{g(x)}. \]
Where \(g(x) \) is a function of slow increase on the interval \([a, \infty)\). Then \(f(x) \) has a continuous second derivative \(f''(x) \) and

\[
\lim_{x \to \infty} \frac{x f''(x)}{f'(x)} = -1. \tag{3}
\]

Proof. Equation (2) gives

\[
f'(x) = \frac{f(x)}{xg(x)}. \tag{4}
\]

Equation (4) gives

\[
f''(x) = \frac{x f'(x)g(x) - f(x)g(x) - xf(x)g'(x)}{x^2 g(x)^2}. \tag{5}
\]

Therefore \(f''(x) \) is continuous on \([a, \infty)\). Finally, equations (4) and (5) give

\[
\lim_{x \to \infty} \frac{x f''(x)}{f'(x)} = \lim_{x \to \infty} \left(\frac{xf'(x)}{f(x)} - 1 - \frac{xg'(x)}{g(x)} \right) = -1.
\]

Since \(f(x) \) and \(g(x) \) are functions of slow increase. The theorem is proved.

2 Generalization of the Logarithmic Integral

It is well-known the formula \((m \geq 1)\).

\[
Li(x) = \int_2^x \frac{1}{\log t} \, dt = \frac{x}{\log x} + \frac{1! x}{\log^2 x} + \cdots + \frac{(m - 1)! x}{\log^m x} + o \left(\frac{x}{\log^m x} \right)
\]

\[
= \sum_{k=1}^{m} \frac{(k - 1)! x}{\log^k x} + o \left(\frac{x}{\log^m x} \right). \tag{6}
\]

In this section we generalize this formula if certain conditions are fulfilled.

We have the following theorem.

Theorem 2.1 Let us consider a function \(f(x) \) of slow increase defined on the interval \([a, \infty) \) \((a > 0)\). Suppose that (see (2))

\[
xf'(x) = \frac{1}{g(x)} \tag{7}
\]

where \(g(x) \) is a function of slow increase on the interval \([a, \infty)\) and suppose that (see (3) and (1))

\[
\frac{xf''(x)}{f'(x)} = -1 + o \left(\frac{xf'(x)}{f(x)} \right)^{m-1}, \tag{8}
\]
where \(m \) is a certain positive integer. Then the following formula holds \((b \geq a)\).

\[
\int_b^x \frac{1}{f(t)} \, dt = \frac{x}{f(x)} + \frac{1}{f(x)} \frac{x^2 f'(x)}{2} + \cdots + \frac{(m-1)! x^m f'(x)^{m-1}}{m \cdot f(x)^m} + \frac{x^m f'(x)^{m-1}}{f(x)^m}.
\]

(9)

Remark 2.2 Note that in equation (9) we have (see the proof of Theorem 7 in [1])

\[
\lim_{x \to \infty} \int_b^x \frac{1}{f(t)} \, dt = \infty.
\]

Remark 2.3 Note that in equation (9) we have (see Theorem 2 and Theorem 4 in [1])

\[
\lim_{x \to \infty} \frac{(k-1)! x^k (f'(x))^{k-1}}{f(x)^k} = \lim_{x \to \infty} (k-1)! \frac{x}{f(x)} \left(\frac{x f'(x)}{f(x)} \right)^{k-1} = \lim_{x \to \infty} (k-1)! \frac{x}{f(x)} g(x)^{k-1} = \infty \quad (k = 1, \ldots, m).
\]

Note also that in equation (9) we have (see (1))

\[
\lim_{x \to \infty} \frac{(k+1)! x^{k+1} (f'(x))^{k+1}}{f(x)^{k+1}} = \lim_{x \to \infty} k \frac{x f'(x)}{f(x)} = 0 \quad (k = 1, \ldots, m - 1).
\]

Remark 2.4 Note that if \(f(t) = \log t \) the conditions of Theorem 2.1 are fulfilled (in particular (8) is true for all positive integer \(m \)). In this case (9) becomes (6). Note also that in Theorem 2.1, \(f''(x) \) is continuous (see Theorem 1.2).

Proof. We have (see Theorem 7 in [1])

\[
\int_b^x \frac{1}{f(t)} \, dt \sim \frac{x}{f(x)}.
\]

That is,

\[
\int_b^x \frac{1}{f(t)} \, dt = \frac{x}{f(x)} + o \left(\frac{x}{f(x)} \right).
\]

Therefore (9) is true if \(m = 1 \).
Suppose that $m \geq 2$. We have (integration by parts)

$$\int_b^x \frac{1}{f(t)} \, dt = \frac{x}{f(x)} + O(1) + \int_b^x \frac{tf'(t)}{f(t)^2} \, dt. \tag{10}$$

On the other hand we have (integration by parts)

$$\int_b^x \frac{k!t^k(f'(t))^k}{f(t)^{k+1}} \, dt = \frac{k!x^{k+1}(f'(x))^k}{f(x)^{k+1}} + O(1) - \int_b^x \frac{t}{f(t)^{k+1}} \left(\frac{k!t^k(f'(t))^k}{f(t)^{k+1}} \right) \, dt$$

$$= \frac{k!x^{k+1}(f'(x))^k}{f(x)^{k+1}} + O(1) + \int_b^x \frac{(k+1)!x^{k+1}(f'(t))^{k+1}}{f(t)^{k+2}} \, dt + \int_b^x \left(-\frac{k!kt^k(f'(t))^k}{f(t)^{k+1}} \right) f''(t) \, dt \quad (k = 1, \ldots, m - 1). \tag{11}$$

Equation (10) and equation (11) applied repeatedly give us,

$$\int_b^x \frac{1}{f(t)} \, dt = \sum_{k=1}^{m} \frac{(k-1)!x^k(f'(x))^{k-1}}{f(x)^k} + O(1) + \int_b^x \left(\frac{m!t^m(f'(t))^m}{f(t)^{m+1}} \right) \, dt$$

$$- \sum_{k=1}^{m-1} \left(\frac{k!kt^k(f'(t))^k}{f(t)^{k+1}} + \frac{k!kt^k(f'(t))^{k+1}t}{f(t)^{k+1}} \right) \, dt$$

$$= \sum_{k=1}^{m} \frac{(k-1)!x^k(f'(x))^{k-1}}{f(x)^k} + O(1) + \int_b^x \left(\frac{m!t^m(f'(t))^m}{f(t)^{m+1}} \right) \, dt$$

$$- \sum_{k=1}^{m-1} \left(\frac{k!kt^k(f'(t))^k}{f(t)^{k+1}} + o \left(\frac{t}{f(t)} \right)^{m-1} \right) \, dt$$

$$= \sum_{k=1}^{m} \frac{(k-1)!x^k(f'(x))^{k-1}}{f(x)^k} + O(1) + \int_b^x h(t) \frac{m!t^m(f'(t))^m}{f(t)^{m+1}} \, dt.$$

Where $h(t) \to 1$ (note that $h(t)$ is continuous on $[a, \infty)$). That is,

$$\int_b^x \frac{1}{f(t)} \, dt = \sum_{k=1}^{m} \frac{(k-1)!x^k(f'(x))^{k-1}}{f(x)^k} + O(1) + \int_b^x h(t) \frac{m!t^m(f'(t))^m}{f(t)^{m+1}} \, dt. \tag{12}$$

We have

$$h(t) \frac{m!t^m(f'(t))^m}{f(t)^{m+1}} = m! \frac{h(t)}{g(t)^m} \frac{1}{f(t)}. $$
Where \(g(t)^m f(t) \) is a function of slow increase (see Theorem 2 in [1]). Consequently (see the proof of Theorem 7 in [1])

\[
\lim_{x \to \infty} \int_b^x h(t) \frac{m!t^m (f'(t))^m}{f(t)^{m+1}} \, dt = \infty. \tag{13}
\]

We have

\[
\lim_{x \to \infty} \frac{\int_b^x h(t) \frac{m!t^m (f'(t))^m}{f(t)^{m+1}} \, dt}{(m-1)!x^m (f'(x))^{m-1}} = \lim_{x \to \infty} m \frac{x f'(x) \int_b^x h(t) \frac{m!t^m (f'(t))^m}{f(t)^{m+1}} \, dt}{f(x)^m} \tag{14}
\]

Using the L’Hospital’s rule we obtain (see (13), (1) and (3))

\[
\lim_{x \to \infty} \frac{\int_b^x h(t) \frac{m!t^m (f'(t))^m}{f(t)^{m+1}} \, dt}{(m-1)!x^m (f'(x))^{m-1}} = \lim_{x \to \infty} \frac{h(x) x^{m+1} (f'(x))^m}{f(x)^{m+1}} = \lim_{x \to \infty} \frac{d}{dx} \left(\frac{x^{m+1} (f'(x))^m}{f(x)^{m+1}} \right) = 1. \tag{15}
\]

Equations (14), (15) and (1) give

\[
\lim_{x \to \infty} \frac{\int_b^x h(t) \frac{m!t^m (f'(t))^m}{f(t)^{m+1}} \, dt}{(m-1)!x^m (f'(x))^{m-1}} = 0. \tag{16}
\]

Finally (12) and (16) give

\[
\int_b^x \frac{1}{f(t)} \, dt = \sum_{k=1}^{m} \frac{(k-1)!x^k (f'(x))^{k-1}}{f(x)^k} + o \left(\frac{x^m (f'(x))^{m-1}}{f(x)^m} \right).
\]

That is (9). The theorem is proved.

Theorem 2.5 Suppose that \(g(x) \) is a function of slow increase defined on the interval \([a, \infty)\) \((a > 0)\) such that

\[
\lim_{x \to \infty} \int_b^x \frac{1}{t g(t)} \, dt = \infty \quad (b \geq a). \tag{17}
\]

Then there exists an unique function \(f(x) \) of slow increase defined on the interval \([a, \infty)\) with continuous second derivative such that \(f(b) = c > 0 \) and such that

\[
\frac{x f'(x)}{f(x)} = \frac{1}{g(x)}. \tag{18}
\]

This function is

\[
f(x) = c \exp \left(\int_b^x \frac{1}{t g(t)} \, dt \right). \tag{19}
\]
Proof. Equation (18) can be written in the form
\[f'(x) - \frac{1}{xg(x)} f(x) = 0. \]
This is a homogeneous linear differential equation of first order well-known. All the solutions of this differential equation are
\[f(x) = f(b) \exp\left(\int_b^x \frac{1}{tg(t)} \, dt \right). \]
Therefore since \(f(b) = c \) our solution is
\[f(x) = c \exp\left(\int_b^x \frac{1}{tg(t)} \, dt \right). \]
Clearly (see Definition 1.1 and (17)) this function is of slow increase on the interval \([a, \infty)\). Its first derivative is
\[f'(x) = \frac{c \exp\left(\int_b^x \frac{1}{tg(t)} \, dt \right)}{xg(x)}. \] (20)
Its second derivative is
\[f''(x) = \frac{c \exp\left(\int_b^x \frac{1}{tg(t)} \, dt \right)}{x^2g(x)^2} \left(1 - g(x) - xg'(x) \right). \] (21)
The theorem is proved.

Theorem 2.6 If the condition (see (8))
\[\frac{xf''(x)}{f'(x)} = -1 + o\left(\frac{xf'(x)}{f(x)} \right)^{m-1} = -1 + o\left(\frac{1}{g(x)} \right)^{m-1} \] (22)
is fulfilled \((m \geq 2 \text{ is a certain positive integer})\) then \(g(x) \sim \log x\).

Proof. Equations (20) and (21) give
\[\frac{xf''(x)}{f'(x)} = -1 + \frac{1 - xg'(x)}{g(x)} = -1 + (1 - xg'(x))g(x)^{m-2} \left(\frac{1}{g(x)} \right)^{m-1}. \] (23)
Equations (22) and (23) give \((1 - xg'(x))g(x)^{m-2} = o(1)\), that is \((1 - xg'(x)) = o(1)\). Hence
\[g'(x) = \frac{h(x)}{x}. \] (24)
Where \(h(x) \to 1 \) (note that \(h(x) \) is continuous on \([a, \infty)\)). Therefore (L’Hospital’s rule)

\[
\lim_{x \to \infty} \frac{g(x)}{\log x} = \lim_{x \to \infty} \frac{h(x)}{x} = \lim_{x \to \infty} h(x) = 1.
\]

The theorem is proved.

Finally, we give an example where condition (22) (that is, condition (8)) is fulfilled. Let us consider the following function \(f(x) \).

\[
f(x) = c_1 \exp \left(\int_b^x \frac{1}{t g(t)} \, dt \right) \quad (c_1 > 0) \quad (b \geq a)
\]

where

\[
g(x) = c_2 + \int_a^x \left(\frac{1}{t} - \frac{1}{t (\log t)^{m-1}} \right) \, dt \sim \log x \quad (c_2 > 0) \quad (a > e) \quad (m \geq 2).
\]

Clearly \(g(x) \) is a function of slow increase and \(f(x) \) is also a function of slow increase since (Theorem 2.5)

\[
\frac{xf'(x)}{f(x)} = \frac{1}{g(x)}.
\]

We have to prove that (see (23)) \((1 - xg'(x))g(x)^{m-2} \to 0\). Now, we have

\[
(1 - xg'(x))g(x)^{m-2} = \left(1 - x \left(\frac{1}{x} - \frac{1}{x (\log x)^{m-1}} \right) \right) h(x)^{m-2} \log^{m-2} x
\]

\[
= \frac{h(x)^{m-2}}{\log x} \to 0 \quad (h(x) \to 1).
\]

As we desired.

An example (different of \(\log x \)) where condition (22) (that is, condition (8)) is fulfilled for all \(m \geq 2 \) is the following.

\[
f(x) = c_1 \exp \left(\int_b^x \frac{1}{t g(t)} \, dt \right) \quad (c_1 > 0) \quad (b \geq a)
\]

where

\[
g(x) = c_2 + \int_a^x \left(\frac{1}{t} - \frac{1}{t^{1+\alpha}} \right) \, dt \sim \log x \quad (c_2 > 0) \quad (a > 1) \quad (\alpha > 0).
\]

References

Received: May, 2010