Operations in Generalized Fuzzy Topological Spaces

T. Babitha

Department of Computer Science
D.J. Academy for Managerial Excellence
Coimbatore - 641 032, Tamil Nadu, India
babithadhana@yahoo.com

M. R. Sitrarasu

Department of Mathematics
Adithya Institute of Technology
Coimbatore, Tamil Nadu, India
sitrarasu19@yahoo.com

Abstract

Generalized fuzzy topological space was introduced and studied by Palani Chetty in 2008. The aim of this paper is to define operations on the family of fuzzy sets of a set and discuss its properties.

Mathematics Subject Classification: 54A40

Keywords: γ—fuzzy open set, γ—fuzzy interior, γ—fuzzy closure, generalized fuzzy topology

1. Introduction and Preliminaries

Let X be a nonempty set and $\mathcal{F} = \{\lambda : \lambda : X \to [0, 1]\}$ be the family of all fuzzy sets defined on X. Let $\gamma : \mathcal{F} \to \mathcal{F}$ be a function such that $\lambda \leq \mu$ implies that $\gamma(\lambda) \leq \gamma(\mu)$ for every $\lambda, \mu \in \mathcal{F}$. That is, each γ is a monotonic function defined on \mathcal{F}. We will denote the collection of all monotonic functions defined on \mathcal{F} by $\Gamma(\mathcal{F})$ or simply Γ. Let $\gamma \in \Gamma$. A fuzzy set $\lambda \in \mathcal{F}$ is said to be γ—fuzzy open [3] if $\lambda \leq \gamma(\lambda)$. Clearly, $\bar{0}$, the null fuzzy set is γ—fuzzy open. In [3], it is established that the arbitrary union of γ—fuzzy open sets is again a γ—fuzzy open set. A subfamily \mathcal{G} of \mathcal{F} is called a generalized fuzzy topology(GFT) [3] if $\bar{0} \in \mathcal{G}$ and $\lor \{\lambda_\alpha \mid \alpha \in \Delta\} \in \mathcal{G}$ whenever $\lambda_\alpha \in \mathcal{G}$ for every $\alpha \in \Delta$. If $\gamma \in \Gamma$, it follows that \mathcal{A}, the family of all γ—fuzzy open sets is a generalized
fuzzy topology. For $\lambda \in \mathcal{F}$, the $\gamma-$interior of λ, denoted by $i_\gamma(\lambda)$, is given
by $i_\gamma(\lambda) = \{\nu \in \mathcal{A} \mid \nu \leq \lambda\}$. Moreover, in [1], it is established that for all $\lambda \in \mathcal{F}$,
$i_\gamma(\lambda) \subseteq \lambda$, $i_\gamma(\lambda) = i_\gamma(\lambda)$ and $\lambda \in \mathcal{A}$ if and only if $\lambda = i_\gamma(\lambda)$. A fuzzy
set $\lambda \in \mathcal{F}$ is said to be a $\gamma-$fuzzy closed set if $\overline{\lambda} = \lambda$ is a $\gamma-$fuzzy open set. The
intersection of all $\gamma-$fuzzy closed sets containing $\lambda \in \mathcal{F}$ is called the $\gamma-$closure of λ. It is denoted by $c_\gamma(\lambda)$
and is given by $c_\gamma(\lambda) = \{\mu \mid \overline{\mu} - \mu \in \mathcal{A}, \lambda \leq \mu\}$. In [1], it is established that $c_\gamma(\lambda) = \overline{\lambda} - i_\gamma(\overline{\lambda} - \lambda)$ for all $\lambda \in \mathcal{F}$. A fuzzy point [4]
x_α, with support $x \in X$ and value $0 < \alpha \leq 1$ is defined by $x_\alpha(y) = \alpha$, if $y = x$ and $x_\alpha(y) = 0$, if $y \neq x$. Again, for $\lambda \in \mathcal{F}$, we say that $x_\alpha \in \lambda$ if $\alpha \leq \lambda(x)$.
Two fuzzy sets λ and β are said to be quasi-coincident [4], denoted by $\lambda \beta$, if there exists $x \in X$ such that $\lambda(x) + \beta(x) > 1$ [4]. Two fuzzy sets λ and β are not quasi-coincident denoted by $\lambda \beta$, if $\lambda(x) + \beta(x) \leq 1$ for all $x \in X$. Clearly, λ is a $\gamma-$fuzzy open set containing a point x_α if and only if $x_\alpha \lambda$, and $\lambda \leq \beta$ if and only if $\lambda \beta(\overline{\beta} - \beta)$. For definitions not given here, refer [2].

2. Enlarging and quasi-Enlarging operations

Let X be a nonempty set and $\gamma \in \Gamma$. Let us agree in calling operation, any element of Γ. An operation $\gamma \in \Gamma$ is said to be enlarging if $\lambda \leq \gamma(\lambda)$ for every $\lambda \in \mathcal{F}$. If $\mathcal{B} \subset \mathcal{F}$, then $\gamma \in \Gamma$ is said to be $\mathcal{B}-$enlarging if $\lambda \leq \gamma(\lambda)$ for every $\lambda \in \mathcal{B}$. We will denote the family of all enlarging operations by Γ_e and the family of all $\mathcal{B}-$enlarging operations by $\Gamma_{\mathcal{B}}$. The easy proof of the following Theorem 2.1 is omitted.

Theorem 2.1. Let X be a nonempty set and \mathcal{F} be the family of all fuzzy sets defined on X. If $\mathcal{C} \subset \mathcal{B} \subset \mathcal{F}$, then $\Gamma_{\mathcal{B}} \subset \Gamma_{\mathcal{C}}$. $\Gamma_e = \Gamma_{\mathcal{B}}$, if $\mathcal{B} = \mathcal{F}$.

An operation $\gamma \in \Gamma$, is said to be quasi-enlarging (QE) if $\gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$ for every $\lambda \in \mathcal{F}$. An operation $\gamma \in \Gamma$, is said to be weakly quasi-enlarging (WQE) if $\lambda \land \gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$ for every $\lambda \in \mathcal{F}$. If $\gamma \in \Gamma_e$, then $\lambda \land \gamma(\lambda) = \lambda$ for every $\lambda \in \mathcal{F}$ and so γ is quasi-enlarging. If γ is defined by $\gamma(\lambda) = \beta$ for every $\lambda \in \mathcal{F}$, then also γ is quasi-enlarging. If $\gamma \in \Gamma$ is quasi-enlarging, then it is weakly quasi-enlarging, since $\lambda \land \gamma(\lambda) \leq \gamma(\lambda) \leq \gamma(\lambda \land \gamma(\lambda))$. The following Example 2.2 shows that a weakly quasi-enlarging operation need not be a quasi-enlarging operation.

Example 2.2. Let $X = \{x, y, z\}$. Define $\gamma : \mathcal{F} \to \mathcal{F}$, by $\gamma(\lambda) = \overline{\lambda}$, if $\lambda = \overline{0}$; $\gamma(\lambda) = x_\{y\}$, if $\lambda \leq x_\{x\}$; $\gamma(\lambda) = x_\{z\}$, if $\lambda \leq x_\{z\}$ and $\gamma(\lambda) = \overline{1}$ if otherwise. Then, $\lambda \land \gamma(\lambda) = \overline{0}$, if $\lambda = \overline{0}$; $\lambda \land \gamma(\lambda) = \overline{0}$, if $\lambda \leq x_\{z\}$; $\lambda \land \gamma(\lambda) \leq x_\{z\}$, if $\lambda \leq x_\{z\}$ and $\lambda \land \gamma(\lambda) = \lambda$ if otherwise. Therefore, $\gamma(\lambda \land \gamma(\lambda)) = \overline{0}$, if $\lambda = \overline{0}$; $\gamma(\lambda \land \gamma(\lambda)) = \overline{0}$, if $\lambda \leq x_\{z\}$; $\gamma(\lambda \land \gamma(\lambda)) = x_\{z\}$, if $\lambda \leq x_\{z\}$ and $\lambda \land \gamma(\lambda) = \overline{1}$, if otherwise and so it follows that γ is a weakly quasi-enlarging operator. If $\lambda = x_\{x\}$, then $\gamma(\lambda) = x_\{y\}$ but $\gamma(\lambda \land \gamma(\lambda)) = \gamma(\overline{0}) = \overline{0}$ and so γ is not a quasi-enlarging operator.

If $\gamma_1, \gamma_2 \in \Gamma$, then the composition $\gamma_1 \circ \gamma_2$ of the two operations γ_1 and γ_2 is again an operation and we write $\gamma_1 \gamma_2$ instead of $\gamma_1 \circ \gamma_2$. The following Theorem 2.3 shows that the composition of enlarging operators is again an
enlarging operator and Theorem 2.5 below gives a property of quasi-enlarging operators.

Theorem 2.3. Let X be a nonempty set and \mathcal{F} be the family of all fuzzy sets defined on X. If $\mathcal{B} \subset \mathcal{F}$, and γ_1 and γ_2 are \mathcal{B}-enlarging, then $\gamma_1 \gamma_2$ is also \mathcal{B}-enlarging.

Proof. Suppose $\lambda \in \mathcal{B}$. Then $\lambda \leq \gamma_1(\lambda)$ and $\lambda \leq \gamma_2(\lambda)$. Now, $\lambda \leq \gamma_1(\gamma_2(\lambda))$, since $\gamma_1 \in \Gamma$. Therefore, $\gamma_1 \gamma_2$ is \mathcal{B}-enlarging.

Corollary 2.4. If γ_1, $\gamma_2 \in \Gamma_e$, then $\gamma_1 \gamma_2 \in \Gamma_e$.

Theorem 2.5. Let X be a nonempty set, \mathcal{F} be the family of all fuzzy sets defined on X and $\mathcal{B} \subset \mathcal{F}$. If $\gamma \in \Gamma$ is quasi-enlarging, $\{\gamma(\lambda) \mid \lambda \in \mathcal{F}\} \subset \mathcal{B}$ and $\mu \in \Gamma_\mathcal{B}$, then $\mu \gamma$ is quasi-enlarging.

Proof. Let $\lambda \in \mathcal{F}$. Since γ is quasi-enlarging, $\gamma(\lambda) \leq \gamma(\lambda \wedge \gamma(\lambda))$. Since $\gamma(\lambda) \in \mathcal{B}$ and $\mu \in \Gamma_\mathcal{B}$, $\gamma(\lambda) \leq \mu(\gamma(\lambda))$ and so $\gamma(\lambda) \leq \gamma(\lambda \wedge \mu \gamma(\lambda))$. Therefore, $\mu \gamma(\lambda) \leq \mu \gamma(\lambda \wedge \mu \gamma(\lambda))$. Hence $\mu \gamma$ is quasi-enlarging.

Theorem 2.6. Let X be a nonempty set and $\gamma \in \Gamma$. Then i_γ is quasi-enlarging and c_γ is enlarging.

Proof. If $\lambda \in \mathcal{F}$, then $i_\gamma(\lambda) = i_\gamma i_\gamma(\lambda) = i_\gamma(\lambda \wedge i_\gamma(\lambda))$, since $i_\gamma(\lambda) \leq \lambda$. So i_γ is quasi-enlarging. Again, $i_\gamma(1 - \lambda) \leq 1 - \lambda$ and so $\lambda = 1 - (1 - \lambda) \leq 1 - i_\gamma(1 - \lambda) = c_\gamma(\lambda)$. Therefore, c_γ is enlarging.

Theorem 2.7. Let X be a nonempty set, $\gamma \in \Gamma$ and \mathcal{A} be the family of all γ-fuzzy open sets. If $\mu \in \Gamma$, such that $i_\gamma \mu$ is quasi-enlarging and $\kappa \in \Gamma_\mathcal{A}$, then $\kappa i_\gamma \mu$ is quasi-enlarging.

Proof. If $\lambda \in \mathcal{F}$, then $i_\gamma \mu(\lambda) \in \mathcal{A}$. By Theorem 2.5, it follows that $\kappa i_\gamma \mu$ is quasi-enlarging.

Corollary 2.8. Let X be a nonempty set, $\gamma \in \Gamma$ and \mathcal{A} be the family of all γ-fuzzy open sets. If $\kappa \in \Gamma_\mathcal{A}$, then κi_γ is quasi-enlarging.

Proof. If $\mu : \mathcal{F} \rightarrow \mathcal{F}$ is the identity operator, then $i_\gamma \mu = i_\gamma$ is quasi-enlarging and so the proof follows from Theorem 2.7.

Let $\{\gamma_\iota \in \Gamma \mid \iota \in \Delta \neq \emptyset\}$ be a family of operations. Define $\varphi : \mathcal{F} \rightarrow \mathcal{F}$ by $\varphi(\lambda) = \vee \{\gamma_\iota(\lambda) \mid \iota \in \Delta\}$ for every $\lambda \in \mathcal{F}$. The following Theorem 2.9 gives some properties of φ.

Theorem 2.9. Let X be a nonempty set. Let $\{\gamma_\iota \in \Gamma \mid \iota \in \Delta \neq \emptyset\}$ be a family of operations. Define $\varphi : \mathcal{F} \rightarrow \mathcal{F}$ by $\varphi(\lambda) = \vee \{\gamma_\iota(\lambda) \mid \iota \in \Delta\}$ for every $\lambda \in \mathcal{F}$. Then the following hold.

(a) $\varphi \in \Gamma$.
(b) If each γ_ι is \mathcal{B}-enlarging, then so is φ.
(c) If each γ_ι is quasi-enlarging, then so is φ.
(d) If each γ_ι is weakly quasi-enlarging, then so is φ.

Proof. (a) If $\lambda \leq \nu$, then $\gamma_\iota(\lambda) \leq \gamma_\iota(\nu)$ and so $\varphi(\lambda) = \vee \{\gamma_\iota(\lambda) \mid \iota \in \Delta\} \leq \vee \{\gamma_\iota(\nu) \mid \iota \in \Delta\} = \varphi(\nu)$. Therefore, $\varphi \in \Gamma$.

(b) Let $\lambda \in \mathcal{B}$. Then, by hypothesis, $\lambda \leq \gamma_\iota(\lambda)$ for every $\iota \in \Delta \neq \emptyset$. Therefore, $\lambda \leq \vee \gamma_\iota(\lambda) = \varphi(\lambda)$ and so φ is \mathcal{B}-enlarging.
(c) Suppose each γ_i is quasi-enlarging. Then for $\lambda \in \mathcal{F}$, $\varphi(\lambda) = \vee \gamma_i(\lambda) \leq \vee \gamma_i(\lambda \land \gamma_i(\lambda)) \leq \vee \gamma_i(\lambda \land \varphi(\lambda)) = \varphi(\lambda \land \varphi(\lambda))$ and so φ is quasi-enlarging.

(d) For $\lambda \in \mathcal{F}$, $\lambda \land \varphi(\lambda) = \lambda \land (\vee \gamma_i(\lambda)) = \vee (\lambda \land \gamma_i(\lambda)) \leq \vee \gamma_i(\lambda \land \gamma_i(\lambda)) \leq \vee \gamma_i(\lambda \land \varphi(\lambda)) = \varphi(\lambda \land \varphi(\lambda))$. Therefore, φ is weakly quasi-enlarging.

Definition 2.10. Let X be a nonempty set and $\mathcal{A} \subset \mathcal{F}$. We say that an operation $\gamma \in \Gamma$ is \mathcal{A}-friendly, if $\nu \land \gamma(\lambda) \leq \gamma(\nu \land \lambda)$ for every $\lambda \in \mathcal{F}$ and $\nu \in \mathcal{A}$.

The following Example 2.11 gives examples of \mathcal{A}-friendly operators. It is clear that if γ is \mathcal{A}-friendly and $\mathcal{B} \subset \mathcal{A}$, then γ is a \mathcal{B}-friendly operator. Theorem 2.12 below shows that the composition of friendly operators is again a friendly operator. Theorem 2.13 shows that arbitrary union of friendly operators is again a friendly operator.

Example 2.11. (a) If $\gamma : \mathcal{F} \to \mathcal{F}$ is defined by $\gamma(\lambda) = \theta$ for every $\lambda \in \mathcal{F}$ for some $\theta \in \mathcal{F}$, then γ is \mathcal{A}-friendly for every $\mathcal{A} \subset \mathcal{F}$.

(b) In any fuzzy topological space (X, τ), the fuzzy interior and closure operators i_τ and c_τ are τ-friendly. That is, the following hold.

(i) $i_\tau(\lambda) \land \nu \leq i_\tau(\lambda \land \nu)$ for every $\lambda \in \mathcal{F}$ and $\nu \in \tau$.

(ii) $c_\tau(\lambda) \lor \nu \leq c_\tau(\lambda \lor \nu)$ for every $\lambda \in \mathcal{F}$ and $\nu \in \tau$.

Theorem 2.12. Let X be a nonempty set, $\gamma, \gamma_1 \in \Gamma$ and $\mathcal{A} \subset \mathcal{F}$. If γ and γ_1 are \mathcal{A}-friendly operators, then so is $\gamma_1 \gamma$.

Proof. Suppose $\mathcal{A} \subset \mathcal{F}$ such that γ and γ_1 are \mathcal{A}-friendly. Then, $\gamma(\lambda) \lor \nu \leq \gamma(\lambda \lor \nu)$ for every $\lambda \in \mathcal{F}$ and $\nu \in \mathcal{A}$, and $\gamma_1(\lambda) \lor \nu \leq \gamma_1(\lambda \lor \nu)$ for every $\lambda \in \mathcal{F}$ and $\nu \in \mathcal{A}$. Replacing λ by $\gamma(\lambda)$ in the second inequality, we get $\gamma_1 \gamma(\lambda) \lor \nu \leq \gamma_1(\gamma(\lambda) \lor \nu) \leq \gamma_1^1(\lambda \lor \nu)$. Therefore, $\gamma_1 \gamma$ is an \mathcal{A}-friendly operator.

Theorem 2.13. Let X be a nonempty set, $\mathcal{A} \subset \mathcal{F}$ and γ_i is \mathcal{A}-friendly for every $i \in \Delta$. Then $\varphi = \vee \gamma_i$ is \mathcal{A}-friendly.

Proof. If $\lambda \in \mathcal{F}$, then for $\nu \in \mathcal{A}$, $\varphi(\lambda) \lor \nu = (\vee \gamma_i)(\lambda) \lor \nu = \vee(\gamma_i(\lambda) \lor \nu) \leq \vee \gamma_i(\lambda \lor \nu) = \varphi(\lambda \lor \nu)$. Therefore, φ is an \mathcal{A}-friendly operator.

Using friendly operators, next we construct quasi-enlarging operators using a generalized fuzzy topology (GFT). Let $\mu \subset \mathcal{F}$ be arbitrary. For $\lambda \in \mathcal{F}$, define $i_\mu(\lambda) = \vee \{\beta \in \mu \mid \beta \leq \lambda\}$ and $i_\mu(\lambda) = 0$, if no such $\beta \in \mu$ exists. Let $\mu' = \{1 - \lambda \mid \lambda \in \mu\}$. Define $c_\mu(\lambda) = \vee \{\beta \in \mu \mid \beta \leq \lambda\}$ and $c_\mu(\lambda) = 1$, if no such $\beta \in \mu'$ exists. If μ is the family of all γ-open sets, then $c_\gamma = c_\mu$ and $i_\gamma = i_\mu$.

Theorem 2.14. Let $\mu \subset \mathcal{F}$ be a GFT. If $\gamma \in \Gamma$, is μ-friendly, then $i_\mu \gamma$ is quasi-enlarging.

Proof. If $\xi \in \mathcal{F}$, then $i_\mu \gamma(\xi) = (\gamma(\xi) \land i_\mu \gamma(\xi))$. Since γ is μ-friendly, $\gamma(\xi) \land i_\mu \gamma(\xi) \leq \gamma(\xi \land i_\mu \gamma(\xi))$. Therefore, $i_\mu \gamma(\xi) = i_\mu i_\mu \gamma(\xi) \leq i_\mu \gamma(\xi \land i_\mu \gamma(\xi))$ and so $i_\mu \gamma$ is quasi-enlarging.

Theorem 2.15. Let $\mu \subset \mathcal{F}$ and $\gamma \in \Gamma$ be μ-friendly. If $\nu \in \mu$ and ξ is a γ-fuzzy open set, then $\xi \land \nu$ is again a γ-fuzzy open set.
Proof. Since ξ is a γ–fuzzy open set, $\xi \subseteq \gamma(\xi)$. Then for $\nu \in \mu$, $\nu \land \xi \subseteq \nu \land (\gamma(\xi) \subseteq \gamma(\nu \land \xi))$ and so $\nu \land \xi$ is a γ–fuzzy open set.

Corollary 2.16. Let $\gamma \in \Gamma$, μ be the family of all γ–fuzzy open sets and γ be μ–friendly. Then $\lambda \land \nu \in \mu$ whenever $\lambda \in \mu$ and $\nu \in \mu$.

Corollary 2.16 leads to define a new subfamily of Γ, namely $\Gamma_4 = \{\gamma \in \Gamma \mid \gamma$ is μ_γ–friendly\} where μ_γ is the family of all γ–fuzzy open sets. Hence, if $\gamma \in \Gamma_4$, then the GFTS (X, γ) is closed under finite intersection, by Corollary 2.16. We call such spaces as Quasi-fuzzy topological spaces. Clearly, if $\gamma \in \Gamma_{14}$, then μ_γ is a fuzzy topological space. The following Example 2.17 shows that $\gamma \in \Gamma_4$ does not imply that $\gamma \in \Gamma_1$.

Example 2.17. Let $X = \mathbb{R}$, the set of all real numbers and F be the family of all fuzzy sets defined on X. Define $\gamma : F \to F$ by $\gamma(\lambda) = \bar{\alpha}$ if $\bar{\alpha} \leq \lambda$, and $\gamma(\lambda) = 0$ if otherwise, where $0 < \alpha < 1$. Clearly, $\gamma \notin \Gamma_1$. Since $\{0, \bar{\alpha}\}$ is the family of all γ–fuzzy open sets, it follows that $\gamma \in \Gamma_4$.

Theorem 2.18. If X is a nonempty set, F is the family of all fuzzy sets defined on X and $\gamma \in \Gamma_4$, then the following hold.
(a) $\iota, (\lambda \land \nu) = \iota, (\lambda \land \iota, (\nu)$ for every fuzzy sets $\lambda, \nu \in F$.

(b) $c_\gamma (\lambda \lor \nu) = c_\gamma (\lambda) \lor c_\gamma (\nu)$ for every fuzzy sets $\lambda, \nu \in F$.

Proof. (a) Since $i, (\gamma(\lambda) \leq \lambda$ and $i, (\gamma(\nu) \leq \nu$, by Corollary 2.16, $i, (\gamma(\lambda) \land i, (\gamma(\nu)$ is a γ–fuzzy open set contained in $\lambda \land \nu$ and so $i, (\gamma(\lambda) \land i, (\gamma(\nu) \leq i, (\gamma(\lambda \land \nu)$. Clearly, $i, (\gamma(\lambda \land \nu) \leq i, (\gamma(\lambda) \land i, (\gamma(\nu)$. This proves (a).

(b) Since $\lambda \lor \nu \leq c_\gamma (\lambda) \lor c_\gamma (\nu) \leq c_\gamma (\lambda \lor \nu)$, it follows that $c_\gamma (\lambda \lor \nu) = c_\gamma (\lambda) \lor c_\gamma (\nu)$ for every fuzzy sets $\lambda, \nu \in F$.

Lemma 2.19. Let $\lambda \in F$, $\gamma \in \Gamma$ and μ be the family of all γ–fuzzy open sets. Then a fuzzy point $x_t \in c_\gamma (\lambda)$ if and only if for every μ–fuzzy open set ν of x_t, νq_λ.

Proof. Suppose $x_t \in c_\gamma (\lambda)$. Let ν be a μ–fuzzy open set of x_t. If νq_λ, then $\lambda \leq (\bar{T} - \nu)$. Since $(\bar{T} - \nu)$ is μ–fuzzy closed, $c_\gamma (\lambda) \leq (\bar{T} - \nu)$. Since $x_t \notin (\bar{T} - \nu)$, $x_t \notin c_\gamma (\lambda)$, a contradiction. Therefore, νq_λ. Conversely, suppose $x_t \notin c_\gamma (\lambda)$. Since $c_\gamma (\lambda) = \land \{\xi \mid \lambda \leq \xi \land \xi$ is μ–fuzzy closed\}, there is a μ–fuzzy closed set $\xi \supseteq \lambda$ such that $x_t \notin \xi$. Then $\bar{T} - \xi$ is a μ–fuzzy open sets such that $x_t \in (\bar{T} - \xi)$. By hypothesis, $(\bar{T} - \xi)q_\lambda$. Since $\xi \geq \lambda, (\bar{T} - \xi)q_\lambda$, a contradiction to the hypothesis. Hence $x_t \in c_\gamma (\lambda)$.

Theorem 2.20. Let $\lambda \in F$, $\gamma \in \Gamma$ be λ–friendly and μ be the family of all γ–fuzzy open sets. Then c_γ is λ–friendly.

Proof. Let $\nu \in \lambda, \xi \in F$ and $x_t \in \nu \land c_\mu (\xi)$. If $x_t \in \omega \in \mu$, then by Theorem 2.15, $\nu \land \omega$ is a γ–fuzzy open set containing x_t. By Lemma 2.19, $(\omega \land \nu)q_\xi$. Then clearly, $\omega q_\nu (\nu \land \xi)$ and so $x_t \in c_\mu (\nu \land \xi)$. Hence $\nu \land c_\mu (\xi) \leq c_\mu (\nu \land \xi)$ which implies that c_γ is λ–friendly.

Corollary 2.21. If X is a nonempty set, F is the family of all fuzzy sets on X, $\gamma \in \Gamma_4$ and μ is the family of all γ–fuzzy open sets, then the following
hold.
(a) \(c_\gamma(\nu) \land \xi \leq c_\gamma(\nu \land \xi) \) for every fuzzy sets \(\nu, \xi \in \mu \).
(b) \(c_\gamma(c_\gamma(\nu) \land \xi) = c_\gamma(\nu \land \xi) \) for every fuzzy sets \(\nu, \xi \in \mu \).
(c) \(i_\gamma(\nu \lor \xi) \leq i_\gamma(\nu) \lor \xi \) for every fuzzy set \(\nu \) and \(\mu \)-fuzzy closed set \(\xi \).
(d) \(i_\gamma(\nu \lor \xi) = i_\gamma(i_\gamma(\nu) \lor \xi) \) for every fuzzy set \(\nu \) and \(\mu \)-fuzzy closed set \(\xi \).

Proof. (a) The proof follows from Theorem 2.20.
(b) Since \(\nu \land \xi \leq c_\gamma(\nu) \land \xi \), the proof follows from (a).
(c) If \(\xi \) is \(\mu \)-fuzzy closed, then \(\omega = \bar{1} - \xi \in \mu \) and so by (a), for \(\nu \in \mathcal{F} \), \(c_\gamma(\nu) \land \omega \leq c_\gamma(\nu \land \omega) \) and so \(\bar{1} - c_\gamma(\nu) \land \omega \leq \bar{1} - c_\gamma(\nu \land \omega) \). Therefore, \(i_\gamma(\bar{1} - (\nu \lor (1 - \omega))) \leq i_\gamma(\bar{1} - (\nu \lor (1 - \omega))) \leq i_\gamma(\bar{1} - \nu) \lor \xi \). If \(\psi = \bar{1} - \nu \), we have \(i_\gamma(\psi \lor \xi) \leq i_\gamma(\psi) \lor \xi \), which proves (c).
(d) The proof follows from (c).

Corollary 2.22. Let \(\lambda \subset \mathcal{F} \) be a GFT, \(\gamma \in \Gamma \) be \(\lambda \)-friendly and \(\mu \) be the family of all \(\gamma \)-fuzzy open sets. Then \(i_\mu c_\mu \) is quasi-enlarging.

Proof. The proof follows from Theorem 2.14 and Theorem 2.20.

In the rest of the section, we will consider a special type of enlargement whose domain is a subfamily of \(\mathcal{F} \). A function \(\kappa : \mu \rightarrow \mathcal{F} \) is an **enlargement** if \(\lambda \leq \kappa(\lambda) \) for every \(\lambda \in \mu \). The following are some examples of enlargements.

Example 2.23. Let \(X \) be a nonempty set, \(\mathcal{F} \) be the family of all fuzzy sets defined on \(X \) and \(\mu \subset \mathcal{F} \). Define \(\kappa : \mu \rightarrow \mathcal{F} \) by

(a) \(\kappa(\lambda) = \lambda \) for every \(\lambda \in \mu \).
(b) \(\kappa(\lambda) = c_\mu(\lambda) \) for every \(\lambda \in \mu \).
(c) \(\kappa(\lambda) = i_\mu c_\mu(\lambda) \) for every \(\lambda \in \mu \).

Then \(\kappa \) is an enlargement in each case.

Let \(\kappa : \mu \rightarrow \mathcal{F} \) is an enlargement. Define \(\kappa_\mu = \{ \lambda \in \mathcal{F} | \) For each \(x_t \in \lambda \), there exists \(\nu \in \mu \) such that \(x_t \in \nu \leq \kappa(\nu) \leq \lambda \} \). The following Theorem 2.24 gives some properties of \(\kappa_\mu \).

Theorem 2.24. Let \(X \) be a nonempty set, \(\mathcal{F} \) be the family of all fuzzy sets defined on \(X \), \(\mu \subset \mathcal{F} \) and \(\kappa : \mu \rightarrow \mathcal{F} \) be an enlargement. The following hold.

(a) \(\kappa_\mu \) is a GFT.
(b) If \(\mu \) is a GFT, then \(\kappa_\mu \subset \mu \).

Proof. (a) Clearly, \(\bar{0} \in \kappa_\mu \). Let \(\nu_\alpha \in \kappa_\mu \) for every \(\alpha \in \Delta \) and \(\nu = \lor\{ \nu_\alpha | \alpha \in \Delta \} \). If \(x_t \in \nu \), where \(t \in (0, 1] \), then \(x_t \in \nu_\alpha \) for some \(\alpha \in \Delta \). By hypothesis, there is a \(\xi \in \mu \) such that \(x_t \in \xi \leq \kappa(\xi) \leq \nu_\alpha \leq \nu \). Hence \(\nu \in \kappa_\mu \) which implies that \(\kappa_\mu \) is a GFT.
(b) Let \(\nu \in \kappa_\mu \). Then for each \(x_t \in \nu \) where \(t \in (0, 1] \), there exists \(\xi_x \in \mu \) such that \(\kappa(\xi_x) \leq \nu \) and so \(x_t \in \xi_x \leq \kappa(\xi_x) \leq \nu \). Hence \(\nu = \lor\{ \xi_x | x \in \nu \} \). Since \(\mu \) is a GFT, \(\nu \in \mu \) and so \(\kappa_\mu \subset \mu \).
References

Received: March, 2010