On QFGP-Injective Modules

Y. E. Zhao

College of Mathematics of Qingdao University
Qingdao, 266071, China
blueskyyu2004@yahoo.com.cn

X. N. Du

School of Mathematics and Computational Science
of Anhui University, Hefei, 230039, China

Abstract

In this paper, we give some characterizations and properties of QFGP-injective modules. It is shown that if M_R is a QFGP-injective R-module with $S = \text{End}(M_R)$, then for any $0 \neq a \in S$, there exists $0 \neq c \in S$, such that $ac = ca \neq 0$ and $l_S(c(M) \cap \text{Ker}(a)) = Sa + l_S(c(M))$; if for any $s \in S$, $s(M)$ is projective, and there exist $0 \neq t \in S$ such that $0 \neq st = ts$, and $l_S(\text{Ker}(st)) = Sst$, then st is a regular element of S; if M_R is a QFGP-injective module and S its endomorphism ring, then for any right uniform element of S, the set $A_u = \{s \in S|Kersu(M) \neq 0\}$ is a maximal left ideal of S containing $l_S(u(M))$; if M_R is a QFGP-injective module and $W = \oplus_{i=1}^{n}u_i(M)$ a direct sum of uniform submodule $u_i(M)$ of M, and $A \subset S$ is a maximal left ideal which is not of the form A_u for some right uniform element u of S, then there is $\psi \in A$ such that $\text{Ker}(1 - \psi) \cap W$ is essential in W.

Mathematics Subject Classification: 16D50; 16E60

Keywords: QFGP-injective module; FGP-injective ring; semilocal ring; uniform element

1 Introduction.

Throughout the paper, R will be an associative ring with identity and M is a right R-module with $S = \text{End}(M_R)$. For a subset X of R, the left(right) annihilator of X in R is denote by $l(X)(r(X))$. If $X = \{a\}$, we usually

1This work supported by the Research Fund of QingDao University.
abbreviate it to \(l(a)(r(a))\). For a set \(A\) of \(M\), the left annihilator of \(A\) in \(S\) is denote by \(l_S(A)\). As usual, we denote the socle and the Jacobson radical of of a module \(N\) by \(\text{Soc}(N)\) and \(\text{Rad}N\), respectively. We write \(J(R)\) and \(Z(R_R)/(Z(R_R))\) for the Jacobson radical of \(R\) and right(left) singular ideal of \(R\) respectively.

Recall a ring \(R\) is called right principally injective \([1]\)(or P-injective for short), if every homomorphism from a principally right ideal of \(R\) to \(R\) can be extended to an endomorphism of \(R\), or equivalently, \(lr(a) = Ra\) for all \(a \in R\). The notion of right P-injective rings has been generalized by many authors. For example, in \([2]\), right P-injective rings are generalized to quasi P-injective modules. A right \(R\)-module \(M\) is called quasi P-injective, if each \(R\)-homomorphism from an \(M\)-cyclic submodule \(s(M)\) of \(M\) to \(M\) can be extended to an endomorphism of \(M\). This is equivalent to saying that if \(l_S(\text{Kers}) = Ss\) for all \(s \in S\). In \([3]\), right P-injective rings are generalized to almost principally injective rings, that is, a ring \(R\) is said to be almost principally injective (or AP-injective for short), if for any \(a \in R\), there exists a left ideal \(X_a\) such that \(lr(a) = Ra \oplus X_a\). In \([4]\), the authors defined almost quasi P-injective modules in the above similar ways to AP-injective rings. In \([5]\), FGP-injective rings are studied. A ring \(R\) is called right FGP-injective, if for any \(0 \neq a \in R\), there exists \(0 \neq c \in R\) such that \(0 \neq ac = ca\) and any right \(R\)-homomorphism \(f : acR \rightarrow R\) can be extended to \(R \rightarrow R\). The nice structure of FGP-injective rings draws our attention to define quasi-FGP-injective modules, and to investigate their characterizations and properties.

2 Main Results.

Definition 2.1 Let \(M\) be a right \(R\)-module, \(S = \text{End}(M_R)\), the module \(M\) is called right quasi FGP-injective (or QFGP-injective for short), if for any \(0 \neq a \in S\), there exists \(0 \neq c \in S\) such that \(0 \neq ac = ca\) and any right \(R\)-homomorphism from \(ac(M)\) to \(M\) extends to an endomorphism of \(M\).

Theorem 2.2 Let \(M_R\) be a right \(R\)-module with \(S = \text{End}(M_R)\). Then the following stations are equivalent.

1. \(M\) is right FGP-injective.
2. For any \(0 \neq a \in S\), there exists \(0 \neq c \in S\), such that \(ac = ca \neq 0\), and \(l_S(\text{Ker}(ac)) = \text{Soc}\).

Proof (1) ⇒ (2). By (1), for any \(0 \neq a \in S\), there exists \(0 \neq c \in S\), such that \(0 \neq ac = ca\), and for any \(R\)-homomorphism \(ac(M) \rightarrow M\) can be extended to an endomorphism of \(M\). For any \(t \in l_S(\text{Ker}(ac)), t(\text{Ker}(ac)) = 0, \text{Ker}(ac) \subseteq \text{Kert}\). Let \(s_1 : M \rightarrow ac(M), t_1 : M \rightarrow t(M)\) be \(R\)-homomorphism induced by \(ac\) and \(t\), respectively, and \(i_1 : ac(M) \rightarrow M\) and \(i_2 : t(M) \rightarrow M\) the embeddings. Since \(s_1\) is an epimorphism, there is an \(R\)-homomorphism \(\varphi :\)
then for any \(0 \neq x \in \mathbb{F} \), there exists \(0 \neq c \in S \), such that \(ac = ca \neq 0 \), and \(l_s(Ker(ac)) = Sac \). For any \(R \)-homomorphism \(\varphi : ac(M) \rightarrow M \) such that \(wt_1 = i_2 \varphi \). Hence \(t = uac \) and \(t \in Sac \). On the other hand, since \(ac \in l_s(Ker(ac)) \), \(Sac \subseteq l_s(Ker(ac)) \).

(2)⇒(1). By (2), for any \(0 \neq a \in S \), there exists \(0 \neq c \in S \), such that \(ac = ca \neq 0 \), and \(l_s(Ker(ac)) = Sac \). For any \(R \)-homomorphism \(\varphi : ac(M) \rightarrow M \), let \(\pi : M \rightarrow ac(M) \) be a natural epimorphism, then \(\varphi \pi \) is an \(R \)-homomorphism from \(M \) to \(M \), and \(Ker(ac) \subseteq Ker(\varphi \pi) \), so \(\varphi \pi \in l_s(Ker(\varphi \pi)) \subseteq l_s(Ker(ac)) = Sac \). Hence there exists \(u \in S \) such that \(\varphi \pi = uac \).

Corollary 2.3 Let \(M_R \) be a QFGP-injective \(R \)-module with \(S = End(M_R) \), then for any \(0 \neq a \in S \), there exists \(0 \neq c \in S \), such that \(ac = ca \neq 0 \) and \(l_s(c(M) \cap Ker(a)) = Sa + l_s(c(M)) \).

Proof For any \(0 \neq a \in S \), by theorem 2.2, there exists \(0 \neq c \in S \) such that \(ac = ca \neq 0 \) and \(l_s(Ker(ac)) = Sac \). Since \(l_s(c(M)) = 0 \), \(l_s(c(M)) \subseteq l_s(c(M) \cap Kera) \). And \(Sa(Kera) = 0 \), so \(Sa \subseteq l_s(Kera) \subseteq l_s(Kera \cap c(M)) \). Hence \(Sa + l_s(c) \subseteq l_s(Kera \cap c(M)) \). On the other hand, for any \(x \in l_s(Kera \cap c(M)) \), it is easy to see that \(Ker(ac) \subseteq Ker(xc) \), so \(xc \in l_s(Kera(xc)) \subseteq l_s(Kera(ac)) = Sac \), thus \(xc = yac, y \in S \), then \((x - ya)c = 0 \), \((x - ya) \in l_s(c(M)) \). Hence \(x = ya + (x - ya) \in Sa + l_s(c(M)) \), that is \(l_s(Kera \cap c(M)) \subseteq Sa + l_s(c(M)) \). The conclusion is proved.

Theorem 2.4 Let \(M_R \) be a right \(R \)-module with \(S = End(M_R) \). Then
(1) If \(S \) is right FGP-injective, then \(M_R \) is QFGP-injective.
(2) If \(M_R \) is QFGP-injective, and \(M \) generates \(Ker \) for all \(s \in S \), then \(S \) is right FGP-injective.

Proof (1) Let \(0 \neq s \in S \). Since \(S \) is right FGP-injective, there exists \(0 \neq t \in S \) such that \(st = ts \neq 0 \) and \(l_s r_s(st) = Sst \). If \(a \in l_s(Ker(st)) \), and \(b \in r_s(st) \), then \(stb = 0 \), so \(b(M) \subseteq Ker(st) \), and hence \(ab(M) = 0 \), that is \(ab = 0 \). It follows that \(l_s(Ker(st)) \subseteq l_s r_s(st) \). Thus, we have \(Sst \subseteq l_s(Ker(st)) \subseteq Sst \). So \(l_s(Ker(st)) = Sst \), and (1) is proved.

(2) Let \(0 \neq s \in S \). Since \(M_R \) is QFGP-injective, there exists \(0 \neq t \in S \) such that \(st = ts \neq 0 \) and \(l_s(Ker(st)) = Sst \). Assume \(a \in l_s r_s(st) \). Since \(M \) generates \(Ker(st) \), \(Ker(st) = \sum_{u \in T} u(M) \) for some subset \(T \) of \(S \). It is easy to see that \(au = 0 \) for each \(u \in T \), thus \(ax = 0 \) for each \(x \in Ker(st) \). This implies that \(l_s r_s(st) \subseteq l_s(Ker(st)) \). Hence \(Sst \subseteq l_s r_s(st) \subseteq l_s(Ker(st)) = Sst \), thus \(Sst = l_s r_s(st) \). Therefore \(S \) is right FGP-injective.

Theorem 2.5 Let \(M_R \) be a QFGP-injective module, for any \(x \in S \), if \(x(M) \) is a minimal right submodule of \(M \), then \(Sx \) is a minimal left ideal of \(S \).

Proof Suppose that \(x(M) \) is a minimal right submodule. Let \(0 \neq y = ax \in Sx \). Since \(y \neq 0 \), there exists \(0 \neq c \) such that \(0 \neq yc = cy \), and any homomorphism \(yc(M) \rightarrow M \) can be extended to an endomorphism of \(M \). Define \(h : x(M) \rightarrow yc(M) \) such that \(h(x(m)) = yc(m) \), for \(m \in M \). This is a well-defined homomorphism. Note that \(Kerh \neq x(M) \), and since \(x(M) \) is
minimal, then $\text{Ker} h = 0$, so h is an isomorphism. Let $i : x(M) \to M$ be the inclusion map. Then $f = ih^{-1}$ is a homomorphism from $yc(M) \to M$, and $f(yc(m)) = x(m), m \in M$. Since f can be extended to an endomorphism of M, then there exists $s \in S$ such that $x = syc = dy, d = sc$. Therefore $Sx = Sy$, which shows that Sx is a minimal left ideal of S.

Lemma 2.6 Let M_R be a right QGP-injective module, then for any minimal left ideal S_1 of S, $l_S(r_M(S_1)) = S_1$.

Proof Since S_1 is a minimal left ideal, then for any $0 \neq a \in S_1$, $S_1 = Sa$. By hypothesis, there exists $0 \neq c \in S$, such that $ac = ca \neq 0$ and $l_S(r_M(ac)) = Sac$. Since Sa is minimal, $Sac = Sa$. Thus $S_1 = Sa = Sac = l_S(r_M(ac)) = l_S(r_M(Sac)) = l_S(r_M(S_1))$.

Corollary 2.7 Let R be a right FGP-injective ring, if K is a minimal left ideal of R, then $lr(K) = K$.

Lemma 2.8 (see [6, Lemma 11 and Theorem 12]) Let M_R be a Kasch module with $S = \text{End}(M_R)$, then $r_Ml_S(T) = T$ for all maximal submodules T of M.

Theorem 2.9 Let M_R be a QGP-injective module, and M_R is finitely generated Kasch module, then the mappings

$$K \to r_M(K) \text{ and } T \to l_S(T)$$

are mutually inverse bijections between the set of all minimal left ideals K of S and the set of all maximal submodules T of M.

Proof Claim 1. $r_M(K)$ is maximal for all minimal left ideals K of S. In fact, let $r_M(K) \subseteq T$, where T is a maximal submodule of M, then $l_S(T) \subseteq l_S(r_M(K)) = K$ by Lemma 2.6, so $l_S(T) = K$ since M is Kasch, hence $r_M(K) = r_Ml_S(T) = T$ by Lemma 2.8.

Claim 2. $l_S(T)$ is minimal for all maximal submodules T of M_R. In fact, $l_S(T) \neq 0$ since M is Kasch. For any $0 \neq s \in l_S(T)$, there exists $0 \neq t \in S$ such that $0 \neq st = ts$ and $l_S(r_M(st)) = Sst$. Then $T = r_Ml_S(T) = r_M(st)$, hence $T = r_M(st)$. Thus $l_S(T) = l_S(r_M(st)) = Sst$. Observe that $Sst \subseteq Ss \subseteq l_S(T)$, so $l_S(T) = Ss$. It follows that $l_S(T)$ is a minimal left ideal of S.

Theorem 2.10 Let M_R be a right R-module, suppose for any $s \in S$, $s(M)$ is projective, if there exist $0 \neq t \in S$ such that $0 \neq st = ts$, and $l_S(\text{Ker}(st)) = Sst$, then st is a regular element of S.

Proof For any $s \in S$, there exists $0 \neq t \in S$ such that $st = ts \neq 0$ and $l_S(\text{Ker}(st)) = Sst$. Let $\varphi : M \to st(M); \varphi(m) = st(m)$, since $st(M)$ is projective, then there exists a short exact sequence: $0 \to \text{Ker}(st) \to M \to st(M) \to 0$. Thus $\text{Ker}(st)$ is a direct summand of M. Write $\text{Ker}(st) = e(M), e = e^2$. So $l_S(\text{Ker}(st)) = S(1 - e)$, let $1 - e = f$, then $f = f^2$. Since $st \in l_S(\text{Ker}(st)) = Sf$, thus $st = yf, y \in S, stf = st$. By hypothesis, $l_S(\text{Ker}(st)) = Sst$, so $f = zst, z \in S$, thus $st = stf = stzst$, hence st is a regular element of S.

Corollary 2.11 Let R be a right PP ring, for any $0 \neq a \in R$, if there
exists \(0 \neq b \in R \) such that \(0 \neq ab = ba \), and \(lr(ab) = Rab \), then \(ab \) is a regular element of \(R \).

Theorem 2.12 Let \(M_R \) be a QFGP-injective module which is a self-generator, then \(J(S) = \Delta \), where \(\Delta = \{ s \in S | \text{Ker}s \text{ is essential in } M \} \).

Proof Let \(x \in J(S) \), then we will show \(x \in \Delta \). If not, then there exists \(0 \neq m \in M \) such that \(\text{Ker} x \cap mR = 0 \). Since \(M \) is a self-generator, there exists a subset \(T \subseteq S \) such that \(mR = \sum_{t \in T} t(M) \), and \(mR \neq 0 \) implies that there exists \(s \in T \) such that \(xs \neq 0 \), then by QFGP-injectivity, there exist \(0 \neq c \in S \) such that \(xsc = cxs \neq 0 \), and \(l_S(\text{Ker}(xsc)) = Sxsc \). Let \(n \in \text{Ker}(xsc), xsc(n) = 0, sc(n) \in \text{Ker}(x) \cap mR = 0, n \in \text{Ker}(sc), \text{Ker}(xsc) \subseteq \text{Ker}(sc) \), so \(\text{Ker}(xsc) = \text{Ker}(sc) \), \(sc \in l_S(\text{Ker}(sc)) = l_S(\text{Ker}(xsc)) = Sxsc \), \(sc = yxsc, y \in S \), \((1-xy)sc = 0 \). Now \(x \in J(S) \), so \(1-xy \) is invertible, thus \(sc = 0 \), a contradiction, hence \(x \in \Delta \).

Conversely, let \(z \in \Delta \). Then for each \(c \in S \), \(\text{Ker}(cz) \) is essential in \(M \). Clearly, \(\text{Ker}(cz) \cap \text{Ker}(1-cz) = 0 \), so \(\text{Ker}(1-cz) = 0 \). Also \((1-cz)^2 = (1-cz)(1-cz) = 1-d \) for some \(d \in \Delta \). Since \(d \in \Delta \), \(0 = \text{Ker}(1-d) = \text{Ker}((1-cz)^2) \). Similarly, we have \(\text{Ker}((1-cz)^n) = 0 \) for all \(n \in Z^+ \). Thus for some \(n \), there exists \(0 \neq s \in S \) such that \((1-cz)^n s = s(1-cz)^n \neq 0 \), and \(l_S(\text{Ker}(s(1-cz)^n)) = Ss(1-cz)^n \). Since \(\text{Ker}((1-cz)^n) \subseteq \text{Ker}(s(1-cz)^n) \), \(l_S(\text{Ker}(s(1-cz)^n)) \subseteq l_S(\text{Ker}(1-cz)^n) = S \) By QFGP-injectivity, there exists \(a \neq 0 \) such that \(a(1-cz) = (1-cz)a \neq 0 \), and \(l_S(\text{Ker}(a(1-cz))) = Sa(1-cz) \). Now \(cz \in \Delta \), so \(acz \in \Delta \), and \(\text{Ker}(acz) \cap \text{Ker}(a-acz) = 0 \), thus \(\text{Ker}(a-acz) = 0 \). Hence \(S = Sa(1-cz) \), this show that \(1-cz \) is left invertible for each \(c \in S \). Hence \(z \in J(S) \).

Corollary 2.13 Let \(R \) be a right FGP-injective ring, then \(J(R) = Z(R_R) \).

A kernel \(Kera \) is called a maximal kernel of \(M \), if for any \(s \in S \), \(Kera \subseteq \text{Kers} \) implies that \(Kera = Kers \) or \(Kers = M \).

Theorem 2.14 Let \(M_R \) be a right QFGP-injective module which is a self-generator, if \(S \) is semiprime, then every maximal kernel of \(M \) is generated by an idempotent.

Proof Let \(L \) be a maximal kernel of \(M \), then there exists \(0 \neq a \in S \) such that \(L = Kera \).

First we have

\((*)\) \(Kera = Kery \) for every \(0 \neq y \in Sa \).

Next we shall show that \(L \) is generated by an idempotent. Let \(S_0 = \Delta \cap Sa \). We can proof \(S_0 = 0 \) by the same similar method as \([7,\text{Theorem 7}]\). Consequently, \(a \notin \Delta \), and hence \(Kera \) is not essential in \(M \). Then there exists a nonzero right submodule \(I \) of \(M \) such that \(\text{Ker} \oplus I \) is essential in \(M \). Since \(M \) is a self-generator, take \(0 \neq m \in I \) such that \(mR = \sum_{f \in T} f(M) \), where \(T \subseteq S \), thus there exists \(b \in T \) such that \(ab \neq 0 \), and hence there exists \(0 \neq c \in S \) such that \(abc = cab \neq 0 \) and \(l_S(\text{Ker}(abc)) = Sab \). As \(Kera \cap I = 0 \), \(\text{Ker}(abc) = \text{Ker}(bc) \), then \(bc \in l_S(\text{Ker}(bc)) = l_S(\text{Ker}(abc)) = Sab \), thus there exists \(d \in S \)
such that \(bc = dabc\), hence \(bc(M) \in \text{Ker}(a - ada) = 0\), but \(abc(M) \neq 0\), so \(\text{Ker}a \subset \text{Ker}(a - ada)\). Since \(a - ada \in Sa\), then by (\(\ast\)), \(a = ada\). Take \(e = da\), then \(e^2 = e\), and \(L = \text{Ker}a = \text{Ker}e = (1 - e)(M)\).

Lemma 2.15 If \(M/\text{Soc}(M)\) satisfies ACC on \(M\)–annihilator submodules, then \(\Delta\) is nilpotent.

Proof By [8, Theorem 6], it is clear.

Combining Lemma 2.15 and Theorem 2.12, we obtain the following theorem:

Theorem 2.16 Let \(M\) be a QFGP-injective module. If \(M/\text{Soc}(M)\) satisfies ACC on \(M\)–annihilator submodules, then \(J(S)\) is nilpotent.

As a special case of Theorem 2.14, we obtain the theorem.

Theorem 2.17 If \(R\) is a right FGP-injective module and \(R/\text{Soc}(R_R)\) satisfies the ACC on right annihilators, then \(J(R)\) is nilpotent.

In [2], An element \(u \in S = \text{End}(M_R)\) is called a right uniform element of \(S\) if \(u \neq 0\) and \(u(M)\) is a uniform submodule of \(M\). An element \(u \in R\) is called right uniform if \(uR\) is a uniform right ideal.

Theorem 2.18 Let \(M_R\) be a QFGP-injective module and \(S\) its endomorphism ring. Then for any right uniform element of \(S\), the set \(A_u = \{s \in S | \text{Ker}(s) \cap u(M) \neq 0\}\) is a maximal left ideal of \(S\) containing \(l_S(u(M))\).

Proof Since \(u(M)\) is uniform, \(A_u\) is a left ideal. It is easy to see that \(l_S(u(M)) \subseteq A_u\) and \(A_u \neq S\), since \(1 \not\in A_u\). Next we shall show that \(A_u\) is maximal. If \(a \not\in A_u\), \(u(M) \cap \text{Ker}a = 0\), whence \(au \neq 0\). Thus there exists \(0 \neq c \in S\) such that \(auc = cau \neq 0\), and \(l_S(\text{Ker}(auc)) = Sauc\). We claim that \(\text{Ker}(auc) = \text{Ker}(uc)\). In fact \(\text{Ker}(uc) \subseteq \text{Ker}(auc)\) is clear. Assume that \(m \in \text{Ker}(auc)\), then \(auc(m) = 0\), whence \(uc(m) \in \text{Ker}(u(M)) = 0\). So \(m \in \text{Ker}(uc)\). Therefore \(uc \in l_S(\text{Ker}(uc)) = l_S(\text{Ker}(auc)) = Sauc\), thus there exists \(y \in S\) such that \((1 - ya)uc = 0\), \(1 - ya \in l_S(uc)\), and \(S = Sa + l_S(uc)\). On the other hand, if \(z \in l_S(uc)\), then \(zuc = 0\), \(0 \neq uc(M) \in \text{Ker}z \cap u(M)\), which implies that \(z \in A_u\), and so \(S = Sa + A_u\). This shows that \(A_u\) is maximal.

Corollary 2.19 Let \(R\) be right FGP-injective. If \(u \in R\) is a right uniform element, define \(M_u = \{x \in R | r(x) \cap uR \neq 0\}\). Then \(M_u\) is a maximal left ideal which contains \(l(u)\).

Corollary 2.20 Let \(M_R\) be a self-generator, right QFGP-injective module, if \(M\) is right uniform, then \(S\) is local.

Proof By hypothesis, \(J(S) = \Delta = \{x \in S | \text{Ker}x\) is essential in \(M\} = \{x \in S | \text{Ker}x \neq 0\} = \{x \in S | 1(M) \cap \text{Ker}x\} = A_1\). So \(S\) is local.

Theorem 2.21 Let \(M_R\) be a QFGP-injective module and \(W = \oplus_{i=1}^{n} u_i(M)\) a direct sum of uniform submodule \(u_i(M)\) of \(M\). If \(A \subseteq S\) is a maximal left ideal which is not of the form \(A_u\) for some right uniform element \(u\) of \(S\), then there is \(\psi \in A\) such that \(\text{Ker}(1 - \psi) \cap W\) is essential in \(W\).

Proof Let \(k \in A \setminus A_u\), then \(ku \neq 0\), so there exist \(c_1 \in S\) such that \(ku_1c_1 = c_1u_1k \neq 0\), and \(l_S(\text{Ker}(ku_1c_1)) = Sku_1c_1\). Since \(\text{Ker}(ku_1c_1) \subseteq
Ker(u_1c_1), thus $u_1c_1 \in l_S(\text{Ker}(u_1c_1)) \subseteq l_S(\text{Ker}(kuc_1)) = Sku_1c_1$. Consequently, we have $u_1c_1 = \alpha_1kuc_1$ for some $\alpha_1 \in S$. Let $\varphi_1 = \alpha_1k \in SA \subset A$. Then $(1 - \varphi_1)u_1c_1 = 0$. This shows that $0 \neq u_1c_1(M) \subseteq u_1(M) \cap \text{Ker}(1 - \varphi_1)$. If $\text{Ker}(1 - \varphi_1) \cap u_i(M) \neq 0$ for all $i \geq 2$, then we are done since each $u_i(M)$ is uniform. Then we can prove the theorem by the same method as [2, Lemma 3].

Theorem 2.22 Let M be a QFGP-injective module which is a self-generator and has finite Goldie dimension.

(1) If $I \subseteq S$ is a maximal left ideal, then $I = Au$ for some right uniform element $u \in S$.

(2) S is semilocal, i.e., $S/J(S)$ is semisimple.

Proof This can be proved in the same way as in the proof of [2, Theorem 4].

Corollary 2.23 Let R be right FGP-injective and right finite dimension.

(1) If $M \subseteq R$ is a maximal left ideal, then $M = Mu$ for some right uniform element u of R.

(2) R is semilocal, i.e., $R/J(R)$ is semisimple.

Theorem 2.24 If M_R is a finitely generated QFGP-injective Kasch module with $S = \text{End}(M_R)$, then

(1) $l_S(\text{Rad}M)$ is essential in S.S.

(2) $\text{Soc}(S)S$ is essential in S.S.

(3) For any $s \in S$, Ss is a minimal left ideal of S if and only if $s(M)$ is a minimal submodule of M.

Proof If $0 \neq s \in S$, then there exists $0 \neq t \in S$ such that $0 \neq st = ts$ and any R–homomorphism from $st(M)$ to M extends to an endomorphism of M. Choose a maximal submodule T of the right R–module $st(M)$. Since M is right Kasch, there exists a monomorphism $f : st(M) \rightarrow M$. Define $g : st(M) \rightarrow M$ by $g(x) = f(x + T)$. As M is QFGP-injective, $g = u|_{st(M)}$ for some $u \in S$. Take $y \in M$ such that $st(y) \notin T$. Then $u(st(y)) = g(st(y)) = f(st(y) + T) \neq 0$, and thus $ust \neq 0$. If $st(\text{Rad}M) \subsetneq T$, then $st(\text{Rad}M) + T = M$. But $st(M)$ is superfluous in M because M is finitely generated, so $T = st(M)$, a contradiction. Hence $st(\text{Rad}M) \subseteq T$. Thus $ust(\text{Rad}M) = g(st(\text{Rad}M)) = f(0) = 0$, whence $0 \neq st \in Sst \cap l_S(\text{Rad}M)$. This implies that $l_S(\text{Rad}M)$ is essential in S.S.

(2) Let $0 \neq s \in S$. Since M_R is QFGP-injective, there exists $0 \neq t \in S$ such that $0 \neq st = ts$ and $l_S(\text{Ker}(st)) = Sst$. Let $\text{Ker}(st) \subseteq T$ for some maximal submodule T of M, then $l_S(T) \subseteq l_S(\text{Ker}(st)) = Sst \subseteq Ss$. But $l_S(T)$ is minimal by Theorem 2.9, so $\text{Soc}(S)S \cap Ss \neq 0$, and hence $\text{Soc}(S)S$ is essential in S.S.

(3) If Ss is minimal, then Kers is maximal by Theorem 2.9, so $s(M) \cong M/\text{Kers}$ is minimal. By Theorem 2.5, the conclusion can be proved.
References

Received: January, 2010